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CHAPTER 1

INTRODUCTION

*
In his article "Two Decades of Spacecraft Attitude cOntrol"(l)

Roberson expresses the judgment that attitude controller design has be-
come "conventional engineering practice". In some areas, like gyro-
scopic or field stabilization, this judgment is doubtless correct. One
exception is the design of controllers for flexible, lightly damped
spacecraft, where in including the flexibility effects, one must also
dcknowledge the distributed nature of vibration energy. This implies
that finite dimension spacecraft models, including state space representa-
tions, will have errors which become large at higher frequencies. The
control of distributed parameter systems is not a new area. Aircraft
and missile structural effects have been successfully dealt with in the
past. Notch filters and/or gain stabilization were used, depending on
the bandwidth and the frequency spectrum. Difficulties arise in the

spacecraft context for the following reasons.

(1) The system is multivariable and too large in scale for

a full order controller to be feasible.

(2) Pointing accuracy and dynamic response requirements

demand a high bandwidth.

(3) Structural frequencies are extremely low.

*Superscript numerals refer to similarly numbered items in the List of
References.
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(4) Damping ratios are no larger than several percent of

critical damping.

(5) The spectrum of modes which must be controlled may overlap
the spectrum of modes which need not be controlled.

Noting these spacecraft characteristics, Croopnick(z) in A Survey of

Automatic Control Techniques for Large Space Structures, states: "It is

nontrivial to design a robust controller for a distributed parameter
system with modeling errors and parameter variations, which simultan-

eously guarantees stability and meets performance requirements.”

Classical techniques are powerful enough to address the flexible
spacecraft issues. Successful controllers have been designed and de-
ployed; a current example is the Galileo spacecraft, where four struc-
tural modes were within the stator control bandwidth. These controllers,
however, are generally single-input/single-output. . For multivariable
systems, particularly of high~dimension, state space techniques are in-
creasingly attractive. Unfortunately, current modern control approaches,
including pole placement and LQG regqulators, are very sensitive to plant/
model mismatch. In applications, Harris(B), Ginter(4), and others have
demonstrated that instability can occur even for simple systems, if
truncated structural representations are used. Alternate approaches have
been suggested, as will be detailed below, but in all of them, stability,

ropustness, and model-sensitivity issues exist.

The intent of the research discussed in this thesis is to demon-
strate a control architecture which is specifically applicable to flexible,
lightly damped satellites. Knowledge of the satellite structural response
characteristics, and insights from linear algebra and singular perturba-
tion theory are exploited to derive a reduced-order controller that is

stable and which meets dynamic performance requirement:s.

To motivate and provide a context for the presentation of specific
thesis results, this introduction starts with a general discussion of

flexible spacecraft structural characteristics and control requirements.

e rw— e e PR - - -




This is followed by a survey of available control design theories, and
a discussion of the drawbacks of these theories in a flexible space-

craft context. The thesis results are then outlined.

1.1 Flexible Spacecraft Response Characteristics

The development of the Space Transportation System (STS) will
have a significant effect on future generations of spacecraft. One
can envision that two distinct classes of vehicles will result. Clearly,
there will be large structures erected in space to serve as antennas,
manufacturing or research platforms, or solar power collectors. Such
structures will, by nature, be multiple~input/multiple-output distributed
parameter systems characterized by low natural frequencies and little
damping. Control requirements will consist of slewing or station keep-
ing commands, control of vibration in the presence of disturbances,
and control of those modes which significantly affect shape. A second
class of vehicles is also consistent with the STS capability and future
missions. Such vehicles will be much smaller and may consist of a rigid
central portion and flexible appendages to mount sensors, solar panels,
and communications devices. These satellites will share many of the
structural response characteristics of the large space structures and
may be more prone to two added complications: changing of configuration
with appendage movement, and a possibility of having noncollocated sen-

sors and activators.

1.1.1 Structural Modeling

The dynamics of flexible damped systems are typically described
by a partial differential eguation in spatial variables and time. 1In
general, this equation is separable into ordinary differential equations

by the assumption

aly,t] = Y[YIT[t] (1)

10
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where

q

X a

elastic deformation vector

set of continuous spatial variables such as x, y, z

Solutions are found in terms of an infinite semibounded set of complex

eigenvalues Ai;

time functions

in terms of an

where

the associated vector valued eigenfunctions ¢i[£], and
ci[t]. The forced response at any point [x,y,z] is given

infinite series

aix,y,z,t] = Z ¢, [x,y,2] & (€] (2)
i=1

[}

- . 2
. & +tM. 0w E.+M ow E =
Ml El Ml 21 Y3 gJ. i % gl

2
m = flogl? o au
v
i f[F © 9,1 ds
S

it

n
i

Finite-element methods describe g[Y,t] with a finite number of points

(n], and truncate the series description at each point after n terms.

This results in a set of second-order ordinary differential equations

in terms of physical translation and rotation, which can be diagonalized

and put into the form

(3)

11




The matrix A is block diagonal

The individual blocks may take the form

0 1 A, o, B
i i i
Ai = s OT s OF
- =20, w, A -
Clwl i Bi al
where
Ai = a + jBi the complex eigenvalue of the mode
A - - A
i % T ]Bi the conjugate of i
2 2 2
w; = oy o+ Si the natural frequency
Ci = ai/wi the damping ratioc

The B and C matrices depend on the mode shapes evaluated at the actuator

or sensor locations.

The derivation of Eq. (3) is presented in Appendix F. There are
two points of interest here. The first is that Eq. (3) introduces a
discrete representation of Y[Y], which, in fact, ignores the high-frequency
modes. The second point is that control systems commonly work in the
time or frequency domain, and therefore seek to control q[x,y...t] by

controlling the magnitude of Ei[t], i=1,=,

12
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1.1.2 Frequency Characteristics

The frequency spectrum (see Figure 1) for a continuous structure

is directly related to the semibounded infinite set of eigenvalues. 1In

this context, the following definitions can be made.

(1)

(2)

(3)

(4)

(2)

| e DISTRIBUTED PARAMETER SYSTEM ——— = e
Fq- FINITE ELEMENT REPRESENTATION-3=
~= EVALUATION MODEL ——— =

=& DESIGN MODEL ———— =

Y
CONTROLLED,UNCONTHOLLED RESIDUAL| UNMODELED
(XC) : (XUC) (X,J (xum)

7

Figure 1. Frequency spectrum.

Controlled modes, X are the modes of the design model
which are explicitly controlled in order to achieve system

performance requirements.

Uncontrolled modes, X e’ are the modes of the design model
which are included in the controller design process, but

are not explicitly controlled.

Residual modes, xr, are those modes which appear in the
large dimensional finite-element model, but are excluded

from the design model.

Unmodeled modes, xum’ are those modes which are assumed

to exist, yet remain unmodeled.

13
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(3)

(6)

(7)

The evaluation model consists of the controlled modes, the

uncontrolled modes, and some subset of the residual modes.
The size of the subset is typically constrained by the
dimension of available computer analysis tools. It is
assumed that testing control alternatives against the evalu-
ation model will be representative of testing these alter-

natives against the actual distributed parameter plant.

Observation spillover is that portion of the measurement

which is contaminated by modes (i.e., X , X _, X ) not
. uc r’ Tum

explicitly controlled.

Control spillover is that feedback control which excites

those modes (i.e., X, X, X ) not explicitly controlled.
uc r um

Note that the above definitions do not restrict eigenvalue multiplicity,

mode frequency separation, or frequency interleaving of controlled, un-

controlled,

and residual modes.

1f a state space model of the system is used, then two states are

required to model the dynamics of each mode. For discussions in this

thesis the following designations are made.

N}

(2)

(3)

(4)

X, states correspond to xc modes.

x, states describe those Xic modes which are freguency

interleaved with the xc modes.

x. and 54 states are associated with the remaining xuc

3

modes. The distinction between X, and x will be made

3 4

later in the text.

55 models the residual (xr) modes.

14
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1.1.3 Control Requirements(Z)

An attitude controller may be required to meet obijectives in three
functional categories: pointing control, vibration control, and figure

or shape control.

Pointing control refers to the static and dynamic errors involved
in following system pointing commands. Traditional designs have focused
on controlling the rigid-body modes and use gain stabilization or an
alternate frequency separation technique to minimize system response at
frequencies above the control system bandwidth. For a flexible satellite,
the low natural frequencies imply that some of the vibration modes will
affect system pointing and, therefore, the dynamics of these modes must
also be controlled. Additionally, frequency separation techniques are
often invalid because of the low damping ratios and the lack of a de-~

fined frequency separation.

Vibfation control is implemented to damp the vibrational energy
in the structure. Sources of vibration excitation include the pointing
controller, internal mechanisms like vibrating or scanning sensors, and
external impulses. The spectrum of these disturbances is sketched in
Figure 2, and may include a broadband low~-frequency component, narrowband
components at discrete higher frequencies, and a white noise representa-
tion of impulsive loads. Shape control implies maintaining a portion or
all of the structures contour close to a specified configuration. Here,
it is assumed that the shape reference is an equilibrium configuration,

and that shape control will regquire that certain modes be constrained.

A

PSD

—— et | co—— —— e an—m— e | c—— — e — co—.

FREQUENCY

Figure 2. Vibration disturbance spectrum.
15
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As noted previously, the pointing, vibration, and figure control
requirements may result in frequency interleaving of controlled, un-
controlled, and residual modes. The objective of flexible spacecraft
control designs is to meet these requirements, and the response times
associated with them, without increasing the dimension of the controller
unduly. Additionally, the controller must have good robustness properties,
be economical of flight computer resources, and be tolerant of external

disturbances.

1.2 Controller Approaches

The difficulties in flexible satellite control stem from three
sources. The first is that the plant is flexible, lightly damped, and
has distributed mass and stiffness. This implies that plant magnitude
drops off very slowly with frequency and that an accurate discrete rep-
resentation could require an infinite number of states. A second diffi-
culty is that design requirements dictate that the bandwidth contain some
of the structural modes, and the case where the controlled and the un-
controlled modes are frequency interleaved may exist. (see Figure 3).
Finally, the space structure can be expected to be a multiple input~

multiple output system.

N D -
LOW-FREQUENCY RESIDUAL CONTROLLE HIGH-FREQUENCY RESIDUAL
P, Vo o . ~———
| | LR
10 20 30 40 50 60 70 80 90100 200

FREQUENCY (rad/s)

Figure 3. Controller approaches.(s)
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Classical designs, employing notch filters and gain stabilization,
are possible, and successful examples are deployed today.(zo) The
strongest deficiency of these techniques is their sensitivity to dimen-
sion. When the dimension of the input or the output becomes large,
implementation becomes difficult. Because of this, state space tech-
niques have been examined as an alternate design methodology. Two ap~
proaches have been taken. One course focuses on the optimal regulator
and trying to implement it. Difficulties arise here because of the
distributed nature of the plant. As another option, direct output
feedback techniques are being looked at. The challenge in applying out-
put feedback is simultaneously achieving stability, robustness, and the

capability to meet dynamic requirements.

1.2.1 The Optimal Regulator

The optimal state feedback requlator is attractive for a number
of reasons. It is an efficient technique for multivariable problems, it
guarantees a stable closed-loop system if well defined conditions are

(6)

met it can meet dynamic response requirements, and it has impressive

. , 7 . . . . :
gain and phase marglns.( ) Moreover, it is simple to implement in the

sense that it requires only a set of constant gains.

An initial drawback to using a regulator is that it requires full-
state feedback. Extensions to theory have included the separation

(6)

theorem, which under appropriate conditions guarantees stability and

good dynamic performance even if a reconstructed or estimated state

is used in the feedback loop. 1In addition, Doyle and Stein (8)

have
shown that full-state robustness properties can be retained if observer

gains are properly chosen.

A more serious drawback to use in spacecraft control design occurs
because the regulator theory, including the robustness theorems, assumes
an accurate plant model. States must be represented adequately, and all
important states must be modeled. Neglecting higher order states may be
justified if the plant is strongly damped, though this must be done care-
fully because, above the bandwidth, the requlator falls off only as 1l/w.

17




In the flexible satellite case neglecting higher order states may not be

3 Ginter,(4) and others have demonstrated that using

possible. Harris,
a truncated structural model in regulator design will produce instability
or undesirable dynamics. Current research in regulator application in-~
cludes three approaches to reducing regulator sensitivity to unmodeled
modes; defining the region where neglecting the unmodeled modes is valid,
modifying the regulator to decrease its sensitivity, and estimating the

unmodeled modes by a set of error functions.

Research that rigorously defines the conditions where truncated
models are valid, is clearly of interest. Results are available in
terms of system eigenvalues [A matrix], and in terms of actuator/sensor
locations [B and C matrices}. Singular perturbation theory, which is
valid if the plant has identifiable slow and fast modes, will allow a

controller to be designed for the slow modes; and if the open-loop
system is stable, it will guarantee stability for the fast modes.(g)
The basic theorems in this area have been extended to the case where an
observer is used to reconstruct some of the slow modes.(lo) Investiga-
tions into applying singular perturbation control formulations to the

(11,12)

flexible spacecraft problem, despite the fact that the slow/fast

L. . 1
condition was not strictly met, have produced nonrobust controllers.( 2,13

14 s .
Balas( ) represents an alternate set of conditions which also

allow a truncated controller. The flexible spacecraft model can be
diagrammed as shown in Fiqure 4, where the modeled dynamics contain both
controlled and uncontrolled modes. Note that there is not dynamic coupl-
ing between modes, a result of the block diagonal A matrix. If C5 =0,
the poles of the residual dynamics will not be shifted, so if the open-
loop residual dynamics were stable the closed-loop residual dynamics will
also be stable. If B5 = 0, there will be no excitation of the residual

modes. To the extent that the control designer has control over the

configuration, Bs and C5 can be minimized and valid designs implemented.(14)

18’
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Figure 4. Flexible spacecraft model.

Gupta(ls) has actively modified regulator theory to reduce the
sensitivity to modeling errors. He introduces frequency-dependent
weights in the cost function and obtains a greater than 1/w rolloff
outside the bandwidth, at the expense of adding dynamics in the feed-
back loop. The feasibility of this concept for application to spacecraft

has not yet been demonstrated.

As a third alternative, Skelton designs a reduced-order controller,
but accounts for the neglected modes with an orthogonal function approx-

. . . . . 7
1mat10n.(16) in their assessment of this method, Joshi and Groom(1 ) note
that it offers "no advantage in the example considered, although spillover

estimates appear to be acceptable.”

19




. wY

1.2.2 Output Feedback

Application of the regulator to distributed parameter problems
is limited because of sensitivity to plant/model mismatch, particularly
in dimension. An alternative which is being explored is output feedback.
without feedback loop dynamics. Output feedback controller laws are of
the form
u = Ky (4)

where y is the system output. There is a body of theory available for
selecting the elements of the K matrix. If a finite plant model of
dimension n is used, and m actuators and p sensors are available, then
K can be chosen to place m + p - 1 closed-loop poles. Ifm+ p -1 > n,

then eigenvectors can also be selected.(ls)

The applicability of these
techniques to spacecraft design is limited for the same reason as the
regulator (i.e., spillover). Because the controller interacts with
residual modes, definitive statements about closed-loop system stability

are not generally possible.

Although one cannot ensure stability in general, results are avail-

(19) estab~

able for special forms of the matrix K. In particular, Canavin
lishes that if feedback consists only of velocity measurements, even if
limited in number, and each sensor output is fed back only to a co-
located actuator, then stability of the closed-loop system can be guaran-
teed. There is a restricted capability, however, to meet system dynamic
requirements, and the stability results are not strictly valid if actuator

or sensor dynamics are acknowledged.

1.2.3 Summary

State space techniques are attractive because they make the design
of controllers for multiple~sensor/multiple-actuator systems tractable.

However, when these techniques have been applied to the flexible-spacecraft

20




problem, they have produced designs which are not totally satisfactory.

For purposes of this thesis, a satisfactory design meets four criteria:

(1) Insensitivity to the process which converts the distrib-
uted parameter structural description to a finite dimen-

sional controller design model.

(2) Insensitivity to parameter variations within the design
model.

(3) Acceptable closed-loop dynamics.

(4) Guaranteed stability.

The fundamental difficulty seems to be in satisfying the first of these

criteria.

1.3 Thesis Overview

1.3.1 Discussion of Results

The research detailed in this thesis develops a methodology for
designing flexible~-spacecraft controllers. This methodology uses a
low-order regulator/observer as the key controller element, but represents

a departure from previous applications for two reasons.

(1) The controller input and output are constrained in the

spatial domain.

(2) Residual modes are explicitly accounted for in the

controller.

The philosophy that motivated these modifications is based on four

postulates:

(1) The fact that modes can be placed in categories (xc, xuc'

xr) represents valuable information. One of the strengths

of the classical control approach is that it permits modes

21




to be phase-stabilized, notch~-filtered, or gain-stabilized
depending on mode characteristics. State space techniques

do not permit this flexibility.

(2) The spatial content of control inputs and observed outputs

is important. The focus of traditional state space
controller designs is in the time or frequency domain;

and spatial information is typically not fully exploited
or acknowledged. However, spatial concepts are of interest,
particularly in the case of flexible satellites. 1In the
time domain, a system input, f[t] = fo « sin [wt], is

a narrowband input, while a discrete inpulse, f[t] =

fo St - tll, is wideband. Similarly, in the spatial do-
main, an input of the form Fly, t] = ¢i[xl f(t] is narrow-
band, and will (for a self-adjoint system) excite only the
ith mode. A point actuator is spatially wideband and will
excite all modes except those where ¢K[Xa] =0 (Xa is the

actuator location).

(3) A truncated controller design model that ignores higher

order modes is not asymptotically valid. The characteristic

values of the truncated dynamical matrix will not approach
the true eigenvalues even in the limit where neglected

frequencies become infinite.(21)

(4) A reduced-order controller is required. In the space-

craft environment, computer computation and memory re-
sources are limited, and while dynamics are allowed in
the feedback loop, it is desirable to keep controller

dimensions small.

A block diagram represenation of the proposed controller archi-
tecture is shown in Figure 5. Transformations T2 and T3 are introduced
in the feedback path and serve to constrain the spatial content of y

and u. The term C4A;184 u in the observer estimate of the system

22
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Figure 5. Reduced-order controller.

output represents a dc correction for residual state effects. The opera-
tion of this controller is perhaps best described in the frequency domain
(see Figure 6). A reduced-order regulator (dimension [gl}) is designed

to give the x. states adequate dynamic response, but constrained to choose

1

control laws of the form u = T Kx,. If T, is chosen so that

1
Bsz = 0

and (5)
B3T2 = 0

then, u will not spill over into 52 or 53. Similarly, the output residual

which drives the observer is constrained to be of the form GT3[X - 2]

23
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where f/ is the observer estimate of the output. If ’I‘3 is chosen so that

and (6)

then, the observation residual will not contain _}52 or X, information.

If T2 and ’I‘3 are chosen to satisfy equations (5) and (6) then the spec-
tral content of the u to ¥ signal path exhibits an identifiable fre-
guency separation (see Figure 7). A subset (54) of the higher order
modes can then be acknowledged in the controller by a singular pertuba-

tion correction term.

SPECTRAL CONTENT PLOTS

PSD

T T

u TO y SIGNAL PATHS

X X4 X5

i

L T .

Figure 7. Spectral content plots: System, utoy.

[
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For the class of problem addressed here, this correction term is shown
to be of a simple form: the observer estimate of state output is modified

by a dc approximation of §4 dynamics.

. -1 (7
y = Clx1 + C4A4 845

The term C4A;lB4 is bounded even if the dimension of 54 is increased with

out limit. It represents the steady-state structural deflections of the
xy modes at the sensor locations due to unit loads at the actuator lo-
cations. The Xx_ states model the residual modes. It is assumed here

5
that if the controller previously discussed is implemented, and the

dimensions of 53 and x, are big enough, then the Xe states will be

gain-stabilized.

4

1.3.2 Specific Contents

The intent of this thesis is to theoretically justify and illustrate
the controller architecture which is discussed in the previous section.

To this end, five chapters and eight supporting appendices are presented:

Chapter 1 Introduction

Chapter 2 M2V2 Satellite Description

Chapter 3 Controller Alternatives

Chapter 4 Summary and Suggestions for
Future Research

Chapter 5 Conclusions

Appendices Transform Methodology

Effect of Filtering a Control Input
Adaptive Transforms

Poles and Zeros of Multivariable Systems
Singular Perturbation Theory

Equations of Motion

Eigensystem Perturbation Theory

= 0O "M m o 0w o>

Implementation Issues
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This organization of information treats the controller problem
on two levels. The main body of the text investigates the system's
implications of alternate controller architectures. A representative
satellite design, the CSDL M2V2 spacecraft, is introduced in Chapter 2.
The state space structural response model of this system is used to help
fix ideas and to illustrate key technical points. Specifically, results
are presented in Chapter 3 which compare the performance of a full-order
optimal regulator with various reduced-order controller options. 1In
contrast to the text, the appendices present detailed theoretical devel-
opments; developments needed to motivate and justify the controller
designs of Chapter 3. Of particular interest are Appendix A, where it

is shown that satisfying Eq. (5) and (6) is eguivalent to

(1) Placing zeros at the same locations in the complex
frequency plane as the poles of A2 and A3 for all U to
¥ signal paths.

(2) Nulling control and observation spillover for 52 and 53.

(3) Making x, and Xy unobservable and uncontrollable.

‘] and ¥ in the
3

B
(4) Placing u in the row null space of [B

column null space of [C2C3].

and Appendix E, where the details of constructing an appropriate,
asymptotically correct, low-order dynamic control design model are pre-

sented.

27
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CHAPTER 2

M2V2 SPACECRAFT

This chapter summarizes the configuration and structural response
characteristics of the CSDL M2V2 spaceborne optical system. Controller
requirements are then discussed within this context. The M2V2 is a pre-
liminary prototype design due to Henderson.(zz) It is used in this thesis
to illustrate the implications of various controller designs. No attempt
is made to address the many implementation issues associated with actually

deploying a satellite of this class.

2.1 Configuration

The optical system under discussion here is a larger scale version
of the Space Telescope. It consists of two space-grade mirrors (a con-
cave primary and an convex secondary) in a Cassegrain configuration (see
Figure 8). The image reflects off the primary mirror onto the secondary,
where it is then directed to the focal plane. In the design used here,
key dimensions include

18 m base length
1.5 m secondary-mirror diameter

5.5 m primary-mirror diameter

The size of the secondary mirror represents a tradeoff between obscuration

and field of view.
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Figure 8. Cassegrain configuration.

The M2V2 satellite consists of the optics described above, a sup-
port structure, processing equipment, a power system, and a sensor/actuator
package. These components are discussed only to the degree necessary to

explain their interaction with the control system.

(1) The support structure is constructed of low-thermal-expansion
graphite-epoxy tubing, and consists of a rigid base and
a metering truss to hold the secondary mirror (see Figures

9 and 10).

(2) The processing equipment includes cooled focal plane
sensors, recorders, and communication devices. For pur-
poses of controller design, this equipment is modeled

as a wideband disturbance in the base section.
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(3) The power system converts and stores solar energy for use
by mission equipment, The components of interest to the
controller are the two flexible solar panels which are

rigidly mounted to the base section.

(4) In general, a satellite sensor/actuator package provides
the ‘control authority and the information necessary to
perform station-keeping, pointing, and vibration control
tasks. In this thesis, attention is limited to motions
about the center of mass. The specific sensors and
actuators that are used are summarized in Figure 11. Mea-
surements 14, 15, and lé are local angle measurements
from an inertial system. The remaining measurements are

displacements from piezo-~electric sensors.

Appendix F models the satellite structure, develops the equations
of motion, and discusses the dynamic response modes. Details of mass

distribution and member sizing are also given.

2.2 Structural Response Characteristics

The dynamic response of the M2V2 system can be characterized in
terms of eigenfrequencies and mode shapes. The details of this character-
ization are given in Appendix F. There are, however, some general comments
of interest here. Fiqure 12 gives the spectral distribution of the
satellite response. There is a dense distribution of modes with occasions
where the eigenvalue multiplicty reaches 4. This spectra is typical of

the distributed parameter system discussed in Chapter 1. Key points to
be noted include the following.

(1) There is no evident frequency separation between a set of

high~ and low-frequency modes.

(2) When several modes have the same or nearly the same natural
frequency it is very difficult to distinguish them in the
frequency domain. Spatial characteristics however, may

permit separation of effects (see Figure 13).
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ACTUATOR LOCATIONS

SENSOR LOCATIONS

PIEZO ELECTRIC MEMBER ACTUATORS SENSOR NODE DIRECTION
ACTUATOR NODE 1 NODE 2 1-16 SENSORS & ACTUATORS COLOCATED
1 5 10 17 1 +x +y
2 51 64 18 21 +Xx +y
3 52 61 19 21 z
4 53 62 20 22 +x +y
5 54 63 21 22 z
6 64 n 22 23 +X +y
7 61 72 23 23 z
8 62 73 24 24 +X 4y
9 63 74 24 24 z
10 6 41 26 25 X +y
1 7 42 27 25 3
12 8 43 28 3 +X +y
13 9 44 29 26 +x +y
30 26 z
CONTROL MOMENT GYROS 31 27 +X +y
32 27 z
ACTUATOR AXIS a3 28 > by
14 X 34 28 z
15 Y 35 29 +x +y
16 z 36 29 2
37 30 +x +y
38 30 2
Figure 11. Summary of actuators and sensors.
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2.3 Per formance Index and Control Requirements

The performance of the optical system is degraded if the base-
line geometric relationships are not maintained. 1In particular, the

following quantities are of interest.

(1) The change in baselength (z spacing between mirrors) which

affects the focus.

(2) The differential displacements between the mirrors in the

x and y directions, which affect the line of sight.

(3) The differential rotations of the mirrors around either
the x or the y axis, which affect the location of the

image on the focal plane.

These five quantities can be defined in modal coordinates; the
specific relationships dare given in Table 1. The notation ... refers
to higher frequency modes which are not included in the truncated

discrete model. From these relationships a scalar cost function in

Table 1. Performance relationships in modal coordinates.

Focal length change (m)

Af = 0.01315 511 -0.01207 522 +0.00239 528 +0.00488 529 + ...

Line~-of-Sight Deviations (m)

Ax = -0.001130 57 +0.002036 £12 +0.001956 €13 +0.005727
523 ~0.001142 526 +0.004582 €30 + ...

Ay = -0.001127 57 +0.002047 512 -0.001934 £13 +0.005733
£23 -0.009312 626 -0.004582 €30 + ...

Deviations of Mirrors from Parallel (rad)

B, = =-0.019368 £, +0.007237 £, + ...

8 = 0.007265 §

y 20 +0.019353 521 + ...
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terms of modal displacements can be constructed. This particular
approach is not taken in this thesis. An alternate philosophy is

adopted which focuses on the following three obijectives.
(1) Achieving adequate rigid-body rotation response.

(2) Adding damping to performance-related modes to improve

disturbance suppression.
(3) Ensuring closed-loop stability.
These objectives translate into the following controller requirements.
(1) A rigid-body bandwidth of less than 1 radian/second.

(2) A 10 percent damping for modes 7, 11, 12, 13, 20, 21, 22.

(3) The isolation of modes 23, 26, 28, 29, 30 from controller
influences.
(4) Adequate stability margins.

Table 2 details the modes which are to be controlled and those
which are to be isolated from the controller. Both sets influence the
optical performance. The intent is to add damping to the first set to
improve time response and to reduce resonance amplification due to
disturbances from either the controller or from the processing equip-
ment. The second set of modes is of higher frequency (see Figure 14).
The time response of these modes is adequate, and it is likely that
they are above the bandwidth of the equipment disturbances. The potential
for being excited by the controller remains, however, and isolation from

control influences is desirable.

2.4 Summary

The focus of this thesis is on the design of controllers for
large-scale, lightly damped, multiple-input/multiple~output systems

where the stiffness and mass are distributed parameters. The M2V2
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Table 2. Controller requirements.

Controlled Modes (see Figure 14, sheets 1 and 2)

Mode Effect
4
5 rigid-body
s rotations
6
7 line of sight
11 focus
12
} line of sight
13
20
} mirror rotation
21
22 focus

Modes To Be Decoupled From Controller Actions (see Figure 14,
sheets 3 and 4)

Mode Effect
23 . .
} line of sight
26
28
} focus
29
30 line of sight
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Figure 14. Controller requirements (sheet 1 of 4)
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Controller requirements (sheet 3 of 4).
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optical satellite is a well characterized design which is representative
of this class of system. This chapter describes this satellite with the

express intent of using it to illustrate controller options in Chapter 3.

It is interesting to note, by way of a side comment, that while
the introduction makes the distinction between discrete and distributed
parameter systems, each of these concepts is an idealization. Real
structures will fall somewhere in between. The M2V2 has distributed

stiffness and mass, but there are also the following discretizing in-

fluences.
(1) Large concentrated optical and equipment masses.
(2) Low moment capacity joints.
(3) Members and componentsS with individual frequencies which
are much higher than the truss frequencies.
(4) Stiff subunit structures like the base section.

The effect of these influences it to produce readily definable truss

and member modes. The point which is of particular interest here is that
the structural designer does have substantial control over the spectral
pattern of the system. Although this thesis does not address the subject,
there appears to be a potential for configuring the truss and sizing the
structural members so that significant frequency separation occurs between

high- and low-frequency modes.
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CHAPTER 3

CONTROLLER OPTIONS

The central contribution of this research is a controller archi-
tecture which is applicable to the pointing and vibration control of
flexible spacecraft. This architecture is a synthesis of three

technologies.

(L) Singular, memoryless transformations of multiple-path

signals (Appendix A).
(2) Asymptotic corrections (Appendix E).
(3) The optimal regulator/observer.

The resulting controller is of reduced order, and promises to provide
the dynamic performance of a full-order design for slight increases in
control cost. The architecture under discussion here was introduced and
justified on technical grounds in Chapter 1. The intent of this chapter
is to discuss the controller issues from an alternate departure point.

A representative flexible spacecraft design, the M2V2 optical system,

is used as a test-bed for various controller configurations. The parti-
cular focus is on exploring the benefits and penalties associated with
introducing output transforms, input transforms, and asymptotic correc-
tions to the observer. The configurations that are exhibited are, in
fact, point designs. Nevertheless, the controller characteristics which

are illustrated are interesting and should be more widely relevant.
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This chapter begins with a brief review of the problem statement.
Then, the discussion turns to the controller alternatives. The baseline
option is a full-state optimal regulator; all discussions of performance

and costs refer to this case.

3.1 Problem Statement

The plant of interest is the M2V2 satellite. A description is
given in Chapter 2, and equations of motion are developed in Appendix F.
It is a lightly damped {f{ = 0.05] flexible structure which supports an
optical measurement system. Optical performance criteria dictate the

controller requirements.

For purposes of this chapter, the dynamics of the M2V2 are modeled
with a 50-mode (1l00~-state) state space model. Eleven of the 50 modes
are to be specifically controlled. This number includes three rigid-body
rotation modes, seven vibratory modes which impact optical performance,
and an additional mode, mode 10, which cannot be spatially distinguished
from mode 4 and thus needs to be controll in the frequency domain. The
states that describe the dynamics of these .ontrolled modes are desig-

nated x The states that are not specifically controlled fall into

1

four categories. Three of these categories, x X and X, are account-

ed for in the controller design, but not inclujed in the performance
requirements. The final category ES contains residual states that are
neglected by the controller design model. The dimensions of the state
subspaces are: dim (51] = 22, dim [52] = 16, dim [53] = 34, dim [34] = 16,
and dim [55] = 12. The frequency spectrum of the model, Figure 15,

summarizes this data.

Sixteen control inputs are available. Three are orthogonal torques
from control moment gyros located in the base section. The other 13 con-
trols are member actuators; 1 in the base section, and 12 in the upper
three sections of the metering truss. Specific locations are given in

Appendix F, Figure F-28.
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Figure 15. Frequency spectrum, evaluation model.

Thirty-eight sensors provide dynamic information. Sixteen of
these are colocated with the actuators. The remaining 22 provide
12 horizontal and 10 vertical displacement measurements along the

solar arrays (see Section F.9.4).

Control requirements dictate that the rigid-body time constant

be 1 radian/second or smaller, that the x. modes be damped to 10 per-

1
cent, and that the set of modes {23, 26, 28, 29, 30} be isolated from

the effects of the controller.

3.2 The Optimal Regulator

An optimal regulator was designed to serve as the baseline con-

troller design. It was assumed that the M2V2 dynamic performance could
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be adequately modeled by a finite element based state space model which

acknowledged x., X, x,, and x . The order of this model is 88. This

1 2 3 4
section reviews regulator design methodology, presents a specific base-

line controller, and then discusses issues and concerns. Included in

this last area is the whole topic of discretization.

3.2.1 Regulator Theory

An optimal regulator for the 88-state plant consists of a control

law and an estimator.

u = Kx (9)
and
X = BAx +Bu+ G(y- Cx)
where
— -
% %
x X
x = 2 and & = | 2
%3 %3
[ %4 | X4
The gain matrix K is given by
K = -R;lBTP (10)

where the matrix P satisfies the algebraic Riccati equation

0O = AT + PA + R, - psnzlan (11)
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The matrices Rl and R2 are weighting matrices associated with state

deviations and control effort in the quadratic cost index

x

T T
J‘fl‘.Rlﬁ*‘ERzﬂdt (12)

%

If K is chosen to satisfy Eg. (10), then the cost index J will be
minimized. The cost associated with driving any state deviation 59

to zero is given by
J = X Px (13)

For the problem at hand, characterized by a block diagonal A
matrix, and a performance index which accounts for only a subset of

s R., P

2 1 1’ and K matrices have special forms.

x (namely 51), the R

(1) The R, matrix is a diagonal 16x16 matrix which weights
control effort. Equal penalties are assessed for using
the member actuators, and these weights are numerically
10 times greater than the weights on the three outputs
of the CMG. The intent is to acknowledge the greater con-
trol authority of the CMG. The exact choice of weights is

not a central concern in this research.

(2) The R1 matrix is a diagonal 88x88 matrix, where 88 is the

dimension of x. However, only 22 of the states are weighted,

and R, has the form

1
Rl } xl
0 }x2
Rl = (14)
0 } x
3
L odyx,
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§1 is 22x22, and is a diagonal matrix. The diagonal ele-
ments of El are not all equal. They have been chosen
iteratively to yield acceptable closed-loop pole place-

ments.

(3) The P matrix is also 88x88, and again has nonzero elements

. t i
1 It is

intuitive that states which are dynamically uncoupled

only in the partition which is associated with x

(block-diagonal A matrix), and not weighted, should have
no cost associated with them. To construct a rigorous proof

of this see Theorem 3.8 in Linear Optimal Control Systems.

P has the form

— =
Pl }x1
0 }x
P = 2 (15)
Q } %,
A ol 1x,

51 is 22x22, and fully populated.

(4) The gain matrix K can also be partitioned.

K = L_Kl K K K, J (16)
Using Eg. (10) and (15), one obtains

K = L-R.B,P, O 0O 0 (17)

The elements of K2, K3, and K4 are all zero.

The specific values of Rl' R2, P, and K for the design at hand
are given in Appendix H, where the method of solving Eq. (ll) is also
discussed.
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Incorporating Eg. (17) into Eq. (9), the optimal control law

becomes
u = K.x (18)

where 31 is a partition of g and

X = Ax + Bu + Gly - Cx) (19)

Equation (13) is an asymptotic observer. The gain matrix G is 88x38. The
elements of G are chosen to give adequate closed-loop performance. In a
stochastic environment, where estimates of plant noise and measurement noise
are available, the matrix G should be the Kalman gain matrix. Alternately,
in a deterministic design, the elements of G can be chosen to place the

poles of the observer error states. This second methodoliogy is used here.

The desired observer error pole locations represent a compromise

between two constraints.

(1) Cost. 1If the observer poles are faster than the closed-loop

system poles, then the incremental cost due to observer error

will be small.(s)
(2) Robustness. If full-state feedback is available, the regu-

lator supplies gain margins of 0.5 to «, and phase margins

of -60° to +60° for all feedback paths.(7) With an observer
or a Kalman filter in the feedback loop, these margins are
degraded. However, the full-state margins are asymptotically
achieved as the observer poles approach the regulator band-

width.(a)

The actual mechanism which was used for placing the poles is the alpha-

shift technique (see Sesak(ll) and Strunce(s)). This technique exploits
duality and chooses
T -1
G = -QC VZ (20)




where Q satisfies
= ~ T T -1
0 = AQ + QA +V1—QCV2CQ

1
ment information. The matrix A is given by

A = A +al

(21)

V., and V2 are weights on observer error states and on the use of measure-

(22)

Use of Eq. (20), (21), and (22) guarantees that all poles of [A - GC]

will be to the left of the line s = -0 in the complex frequency plane.

For designs in this chapter a = 6.0, and V. and V_ are diagonal.

2 1 2

elements of V_ were set equal to 1.0x10" , and elements of V. were

2
iterated to achieve satisfactory pole locations.

1

The

If the control law given by Eq. (18) and (19) is implemented,

the closed-loop system can be described by Eq. (23).
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% By ¥ BKy 1 B1%y %
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=3
L9_4 (23)
—~ (Cont.)

The closed-loop system poles are the poles of the following

matrices.

[Al + BIKJ
A2, A3, and A4
B - cd

If K and G are chosen by the methods described above, then these poles

will all have negative real parts, and the overall system will be stable.

3.2.2 Baseline Design

The optimal regulator is used as a standard against which other

controller architectures can be evaluated. The quantities of specific

interest are as follows.

(1)

The Regulator Weights Rl and R2. Numerical values for Rl

and R2 are given in Appendix H. For purposes here, the
specific values are less important than the fact that each

subsequent controller option will use the same weightings.
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(2) The Cost Matrix P. Numerical values for the elements of P

are given in Table 3. Recall that the cost to null any

, 0o . . 0oT_ 0O
state deviation X is given by J = x "Px . In Table 3 the
costs are ordered to correspond to 1l displacements {modes 4,

5, 6, 7, 10, 11, 12, 13, 20, 21, 22), then 11 modal velocities.

(3) The Closed-Loop Poles. Figure 16 shows the open-loop loca-

tions of the Al poles. Under control action, these poles

move to locations shown in Figure 17. The poles of A2, A3,
and A4 are not modified by the controller. The error poles
of the observer are given by det [sI - A + GC] = 0. The
matrix G was not calculated for the 88-state case for the

following reasons.

(a) Computer limitations precluded assessing a lé6-state

closed-loop system.

(b) The cost matrix was assumed to be independent of the

observer.

(c) The closed-loop system poles are available in closed

form.

However, it is known that all the observer poles would be

to the left of s = -6,

Time histories of the closed-loop full-state feedback response to

a unit initial condition on each of the x, states is shown in Figure 18.

1
Plots of the corresponding open-loop response are given in Figure 19. (An

oversight is that the solar mode 10 was not initialized as intended.)

3.2.3 1Issues and Concerns

If an accurate plant model is available, optimal control theory

is a very attractive design technique. The resulting controller is a
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Table 3. Cost matrix P.
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cascade of steady-state regulator gains and a time-invariant asymptotic
observer. If the initial observer error is zero, the controller mini-

mizes the quadratic performance index

T T
= +
J f x Rlx U R_u dt (24)

and has good stability margins. The design process itself is well de-
fined, rigorous, noniterative in principle, and structured to treat the
multiple-actuators/multiple-sensor plant. Despite its attractiveness,
there are issues associated with implementing a regulator. This section
identifies these issues and discusses them in the context of the M2V2

design.

3.2.3.1 Design Model

Regulator theory requires a finite dimension state space model as
a departure point. There are two issues associated with constructing this
model; the issues of discretization, and of model dimension. The validity
of using a discrete model to represent a distributed parameter system is a
concern. There are only two cases where a finite model can be rigorously

justified.

(L) The zero spillover case where either BS——the residual mode

input distribution matrix, o. C5——the residual mode output

matrix is equal to zero.
(2) The case of high-frequency residual modes.

In the first case, a truncated structural model is valid, and

the controller will have the form

= Kx

e

AX + Bu + Gly - Cx) (25)

X e
I
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In the case of high-frequency residual modes, the dynamics of X

may be neglected, and the ES modes treated as dc. The coupling between
controlled and residual modes is retained, but the dimension of the con-
troller is reduced. This approach is motivated by singular perturbation

theory (see Appendix E)}, and leads to a control law of the form

u o= Kx

X = Ax + Bu + G(y - ¥)

vy = cx+c.a’tBu (26)
L 2T 5t Foo

This controller design is similar to the case just shown, except the dc
effect of 55 is subtracted from the system output before it drives the

observer.

Neither Eq. (25) nor (26) will be valid in the general flexible-
spacecraft case. Residual states are typically close in frequency to
the controller bandwidth, and are both excited and observed. As mentioned
in the introduction, the presence of residual modes greatly hinders the

application of regulator theory to flexible-spacecraft control.

Having acknowledged the difficulties associated with residual
modes and discretization, one also faces the problem of dimension. The
g8-state model used in the Section 3.2.2 design is small from the struc-
tural point of view. It includes as an example only the first two axial
modes and the first two bending modes. On the other hand, from the con-
text of a spaceborne computer, it is very large. Theory demands that the
observer have the same dimension as the plant model. However, the com-
putational requirements associated with 88 coupled difference equations
are significant in a limited-computer-resources environment. This
practical consideration is a strong motive for reducing the order of
the controller. An additional motive is the asymmetry between the di-
mension of the gain matrix, 16x22, and the dimension of the observer,

88. An observer of dimension 22 would be attractive.

€7




3.2.3.2 Closed-Loop Performance

There are three performance requirements associated with the M2v2
controller design. Two of these requirements are directly reflected in

the performance index.

(1) The increase in damping ratio to 10 percent for modes 7,

11, 12, 13, 20, 21, 22.

(2) The time constant of 1 radian/second for the rigid-body

rotation modes 4, 5, 6.

As illustrated in Figure 17, these requirements are met. The third

requirement

(3) Isolation of modes 23, 26, 28, 293, and 30 from controller

action.

is not reflected in the performance index, and cannot be fulfilled by
the optimal regulator (see Figure 18). The problem is caused by the
term B3Kl in Eq. (23), a control spillover term. From a fundamental
point of view, there is no mechanism in traditional regulator theory

for decoupling modes from control influence.

3.2.3.3 Use of Spatial Information

The discussion here brings up a philosophic issue, in contrast
to the implementation questions just presented. A structure can be
modeled by a separable partial differential equation in space and time;
both spatial and temperal characteristics are important. The regulator
is based in the time domain, and when applied to a flexible structure,
it controls modes by shaping the frequency content of the control signals.
The philosophic guestion concerns the merit in shaping control in the
spatial domain as well. It is hypothesized that a controller which blends

spatial and temporal information may be attractive for this problem.
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3.3 Alternate Control Architectures

Regulator theory provides a powerful methodology for the treatment
of multiple-sensor/multiple-actuator, large-scale problems. However, the
regulator designs are not completely satisfactory if the plant is a dis-
tributed parameter system like a spacecraft. As discussed in Section 3.2,

deficiencies fall into two categories.

(1) Deficiencies associated with plant/model mismatch.
(2) Deficiencies occurring even if an accurate plant model is
assumed.

This section begins by assuming that an accurate plant model exists.
Within this context, options are explored which reduce the dimension of the
controller and which allow some of the uncontrolled states to be isolated
from controller excitation. The plant/model mismatch is then acknowledged,

and the effects of residual modes are discussed.

3.3.1 Reduced-Order Observers

The baseline optimal control law has the form
u = Kx (27)

is a partition of x

-

%

where 51

x - ~
_ 2 ERZ.{' X, ER88 (28)

and

= Ax + Bu + Gly - Cx] (29)

[¢>e
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Equations (27) and (29) form the optimal controller. The intent of

this section is to replace the 88-state dynamic observer (Eg. (29)) with
an observer of lower order. There are two motivations for this. The
first is practical in nature: to reduce the real-time computational
burden. Propagating a g88-element state vector is expensive even on a
mainframe computer. Performing a similar calculation within the compu-
tational and memory constraints of flight-qualified hardware may not be

feasible. The second motivation is the asymmetry that exists between

the observer, which uses 88 states to estimate Xiv Xy0 %o and Xy and
the control law which only requires gl {(dimension 22). It would be
heuristically attractive to implement an observer of the same dimension
a .

s X

3.3.1.1 Alternate Designs

Three reduced-order observer designs are considered. The first

design has the form

%] (30)

X = A x. + B.u+ Gly - Cl—l

-1 1-1 1

G is picked using the method discussed in Section 3.2.1. The poles of

[Al - GCl] are given in Figure 20. . This observer is of dimension 22.

One intuitive concern regarding the first observer design is that

the X and 52 states are interleaved in frequency (see Figure 15). It is
heuristically difficult to neglect the 52 states. The second design,
therefore, includes the %, state dynamics in addition to the El' and
has the form

X Aoy By %

A = A + u+Gly - [C C ] » (31)

% o A L% By a2l %

70




IMAGINARY
- 220

L
—160
I~ 150
- 140
=130

=120

~ 30

- 20

REAL IMAG

2 -0.21737%9371101C0+02 0.21733645332320+03
G =0.1632726359025D+02 0.14725205351540+03
& =0.1255°5370529324+02 0.14728156323520+03
8 =0.10735340922340+02 0.%002C81642465%0+02
10 -0.1431020156827D+02 0.3%991673154760+02
12 =-0.1189357552306D+02 0.3576007152293D+C2
14 -0.191755525589348D+02 0.2614455731971C+02
16 -0.18442661125550+02 0.19060C51072564D402
18 ~0.12CS53°38812533D+02 0.77574C570533470-C
20 -0.1203670151775D2+02 0.962225ClIC46E0-01
22 -C.12017715:S537D+02 0.16119793315150+400

REAL— T T T T T

-100 90 80 -70 -60  -50

Figure 20. Observer 1:

71

poles of (A1 - GC




This design is of dimension 38. It is inefficient because it ocutputs
unnecessary information [§2], but it is easier to justify than the

previous design. The poles of

are g:ven in Figure 21.

The third observer option relies on only x, dynamic information,

1
and has dimension 22. It is similar in structure to the first observer,
but instead of using the system output to drive the estimator, it uses

a singular transformation of the output. Specifically, an output trans-

form, T3, is introduced, where T3 satisfies the following conditions

T,C, # 0
T,C, = 0
T, = 0 (32)

The details of calculating ’I‘3 are discussed in Appendix H. Then, an

observer of the form

x.1 (33)

X, = AX, +Bu+GT 0y - Cx

1 1-1 1
can be constructed. The gain matrix G is based on [Al, T3Cl]. The poles
of [Al - GT3C1] are given in Figure 22. The transform T3 affects the
dimension and orientation of the unobservable subspace. If Eq. (32)

is satisfied, then both x_  and 53 are unobservable. T_ depends explicitly

2 3
on spatial information. Recall that the columns of C are the mode shapes

evaluated at the sensor locations.
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3.3.1.2 Closed-Loop Assessment

The three candidate reduced-order observers have similar error
dynamics if evaluated against their design models. When evaluated
against a higher dimension plant model the similarity disappears. This
subsection presents the closed-loop performance. The evaluation plant
model consists of the L3 and X,
model is dictated by a dimension constraint on available eigenvalue

states, and 22 of the 53 states. This
routines. The plant model is kept constant for all three evaluations.
In addition, the same gain matrix (the optimal gains Kl) are used.
Tables 4, 5, and 6 summarize the closed-loop transfer functions between

a slew command and a slew response for three observer candidates.

3.3.1.3 Discussion

The observer based on only x. information is not satisfactory.

The observer poles and the unmodeleé plant poles interact
r;(_ :\ + B,K 0 0 B K i "‘xT
1 1 171 1 -1
x, BK, A, 0 B,K, x,
X[ © B,K, 0 A, B K, X, G
L—é.a | o G, 6, A, - GC) = |

and the closed-loop system is unstable. This is a demonstration of the

adverse effects of spillover.

If the dimension of the observer design model is increased, and
the 52 dynamics are included, then the observer will estimate 52 and
use this estimate to reduce cbservation spillover. Nevertheless, there
is still interaction between the observer poles and the unmodeled plant

poles
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Table 4. Closed-loop transfer characteristics, slew command to slew
response for observer 1 (sheet 1 of 2).
evaluation model consists of the 51

, X, and x

(In this case the
states.)
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-11.047015
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=-11.44%556
-21.405136
-18.791641
~9.357993
0.679920
0.476150
-19.227478
-13.936120
-10.019306
-21.695365
-25.753845
~2.532052
~7.124103
~6.972634
~7.953462
~-14.703%21
-12.433351
-25.03%9124
-26.576904
-13.021539
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7.825401 8.255953E-01
18.710480 7.086354E-01
22.301987 3.869218E-01
24.18%36 -2.805481E-02
23.616639 -2.016094E-02
24.109737 6.235011E-01
36.655167 3.553773E-01
40.462021 2.4936258-01
16.450302 5.114439E-01
33.289597 6.118%47E-01
46.953949 5.334804E-02
137.457911 5.175430E-02
137.211060 5.075137¢-22
138.302078 5.741305E-02
147.527267 9.917778E-02
148.072800 8.367336E-02
162.899251 1.725527€~01
141.79€431 1.842195E-01
259.915771 5.003433E-02
298.099609 5.082010E-02

THE FOLLOWING POLES

NUMBER

MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

REAL

296.345459
322.261230
373.757368
376.035551
457.258545

~-1.0003605
~1.17660%0
-32.5592194
-14.5011158
~5.9662685
~19.64964905
4.6008844
-19.9740753
-18.2264557
-13.59075%8
-14.9602709
-15.7026667
-15.4693867
-18.7397308
~18.4756439
-19.7651672
-20.4223973
-22.2779388
~22.44938934

5.083331E~02
5.000663E-02
4.969231E-02
5.023%91E-02
4.99%36CE-02

IMAGINARY

23.5027618

32.9516602

37.1050110
140.990448
139.271133
215.5193897
218.800003
268.270752
298.845459
305.72607%
310.1145990
375.975830
372.778309
394.5e0322
408.1665C4
444.873291
448.315186

FREQUENCY

—

L UUBIRDRNRHHEFHHHHPD PR UG DRN

.05C586E+00

.386836E+01

.631807E+01
.418575E+01
L419919E+01
. 351243E+0C1
L083792E+01
L9C1500E+01
L168507E+01
LCAlBITESO]
.2052582401
L702217E+01
.376524E+02
.373881E+02
.335306E+02
.4B82582E+02
.4B5339E+402
.450763E+02
.G42675E+02
.602417E+02
. 924854E+02
.967250E+402
L205650E+02
LTR2253E402
LTe514%E402
.573311E+02
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Table 4.

Closed-loop transfer characteristics, slew command

to slew response for observer 1 (sheet 2 of 2).

-1.012952
-6.951283
~11.04¢655
-0.516858
~13.39055%
-7.476950
~22.202805
-3.5733%%
-0.485787
0.679912
~19.227661
-31.977722
~11.242344
~23.912643
-2.532063
~33.452271
-7.00377¢
-6.970345
~4.729492
-~9.3278%7
-12.510166
-26.663437
-33.193481
-12.814193
-15.117%49
-15.0193¢8
~14.401913
-15.951144
~-18.703232
-20.666031

Lo 3 L P

12
1le
16
18
20
22

Y
4

26

"
<

30
32
34
36

-1.0003605
-1.1766090
-14.5011034
-32.5591888
~5.9662676
4.6008344
-19.4964505
-19.974C753
-18.2264557
~13.590789%8
~14.9602709
~-15.7036067
-15.4683867
-18.6756439
~18.7397308
-19.7651672
-20.4228973
-22.2779338
~-22.4438934

3.413284
8.206378
11.432682

22.017761
23.537735
24.18963%
26.105207
19.621918
39.843384
33.227295
46.953564%
40.679588
137.681661
137.2117¢2
134.574493
147.548218
148.133352
141.809352
142.873082
257.944580
297.697266
296.079834%
310.535400
335.117920
373.776611
423.620361

THE FOLLOWING ZEROS MATCHED POLES AND WERE

8.97625CE-01

6.285793E-02

5.473333E-01

1.612917E-01
2.067671E-0Q2
~2.80954%C-02
6.235133E-01
8.523321E~-01
2.715601E-01
5.841275E-01
5.3348&25E-02
6.351567E-01
5.080347E-02
5.073520E-02
3.512237€-02
6.305301E-02
8.415248E-0Q2
1.8473552-01
2.062937E-01
4.961689E-02
5.071762E-02
5.066378E-02
4.632789E-02
4.754477E-02
4.997602E-02
4.872638E~02

23.5027618
32.9516602

37.1050110
139.271133
140.95044%8
215.519897
218.800003
£68.270752
298.845459
305.72607%
310.114990
372.778209
375.97E830
394.580322
408.166504
444 .873291
448.315186

7.764083E+00

8.222638E+00

o

.366056E+01

.230986E+01
L30ACTTESOL
+419919E+401
.08375%C+01
.7517901E401
.139509E+01
-093736E+01
.70221GE401
.26677GE+0]
.3785%6E+02
.373887E+02
.396575E+02
.478428E+02
LGE6GOTENCR
LG5293FE402
LGu6332E+02
LE8T62TE4Q2
.QEC808E+02
. 955604E+02
.108691E402
.354973IE+02
LTG2641E+02
.241240E4+02

DU HMDON HHHMHEHEHEALEL DU

ELIMINATED IN THE ABQVE LISTS
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Table 5. Closed-loop transfer characteristics, slew command
to slew response for observer 2 (sheet 1 of 2).
---------------- UNIQUE POLES=---=--ac--acaux
S-PLANE
NUMBER REAL IMAG DAMPING FREQUENCY

1 -0.987259

2 -1.069546

3 -1.000226

4 -11.659215

6 -11.079893 0.694201 9.980430E-n1 1.110162E+01
7 -12.376805

9 -13.033106 1.044375 9.968048E-01 1.307488E+01
10 -6.282499

11 -22.712341

13 -19.417023 20.433807 6.888410E-01 2.818796E+01
15 -16.052307 21.669006 5.952561E-01 2.696706E+01
17 -15.698311 22.468597 5.727350E-01 2.740938E+01
19 -18.631088 23.348709 6.237172E-01 2.987105E+01
21 -1.137619 22.723938 5.000000E-02 2.275238E+01
23 -1.083267 23.482864 4.608113E-02 2.350783E+01
25 0.089596 22.793396 -3.930740E-03 2.279356E+01
27 -31.485703 11.935660 9.350682E-01 3.36720%E+01
29 ~16.75€836 31.924820 4.647536E-01 3.605531E+61
31 -24.839035 30.254044 6.345487E~-01 3.914441E .01
33 -11.940179 35.96676% 3.150699E-01 3.789691E+01
35 -164.202227 39.408997 3.390362E-01 4.189000E+01
37 -1.926232 35.892975 5.358388E-02 3.594463E+01
38 -41.888321
40 -31.986328 33.282425 6.929286E-01 4.616107€+01
a2 -8.727573 46.181061 1.856989E-01 4.699852E401
44 -8.506873 147.394333 5.761918E-02 1.476396E+02
46 -8.484466 147.412018 5.746103E-02 1.476560E+02
48 ~7.3380895 147.433258 5.000000E-02 1.676179E+02
50 -7.380128 147.417938 5.000000E-02 1.476026E+02
52 -6.895615 137.739792 5.000000£-02 1.379123E+02
54 -6.952700 138.880056 5.000000E-02 1.390540E+02
56 -30.203094 135.616827 2.173787E-01 1.389423E+02
58 ~33.183334 135.125336 2.130005E-01 1.38455GE+02
60 -39.497787 134.564545 2.816411E-01 1.402415E+02
62 -39.287439 133.329102 2.826496E-01 1.389569E+402
63 -105.252670

64 67.066559
66 -13.012999 259.891602 5.000825E-02 2.602170E+02
68 -14.786859 295.269775 5.001649E-02 2.956396E+402
70 -14.9520642 297.097412 5.026346E-02 2.974730E+02
72 -13.806489 304.784668 4.525276E-02 3.050972E+02
7% -16.12%684 322.225492 4.999394E-02 3.226326E402
76 -18.707413 373.761719 4.998915E-02 3.742295E+02
78 -18.694656 372.771729 5.008746E-02 3.732402E+02
80 -19.345840 375.963623 5.138870E-02 3.764609E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMIMATED IN ABOVE LISTS

NUMBER REAL IMAGINARY
2 ~7.33520790 146.520645
e -11.379520% 144.194107
6 -6.8707819 137.243759
8 -6.7724915 135.280411

10 -14.0057030 217.711624

12 -10.9059601 217.846375

14 -13.4055433 267.830322

16 -164.9545565 298.820801

18 -15.1777697 310.302002
78




Table 5. Closed-loop transfer characteristics,
to slew response for observer 2 (sheet 2 of 2).

slew command

-15.
-12.
-1.
-39.
-15.
~43,
-8.
~66.
65.
-8.
-8.
-7.
-7.
6.
-6.
-30.
-30.
~34.
-39.
-105.
-1z.
-la.
~14.
-13.
-15.
-l6.
~18.
~18.

680878
694489

0.140680

0.991790
8.797625

21.597702
22.439590
20.445221
264.392853
22.743025
23.566193
22.784088
30.807693
36.133194
36.227997

40.792191
10.643792
46.18719%5
38.276611

147.411163
147.327850
147.033630
147.422943
137.761185
134.322495
135.341415
135.124935
139.312332
133.329437

258.293652
295.081055
296.835337
304.784912
315.840332
344.377197
373.775879
372.771240

THE FOLLOWING ZEROS MATCHED POLES AND WERE

~7.
-11.
-6.
-6.
-la.
-10.
-13.
=14,

-15

3352070
3795233
8707819
7724915
0057011
9055601
4055443
9545565
1777773

146,
144,
.243759
135.
217,
217.
267.
298.
310.

137

9.999265E-01

0

.969561€-01
.026327E~01

n

.947253E-01
LT2T746%E-01
.838220€-01
. 748352E-01
.980015E-02
.355857E-02
.397720E-03
.493430E-01
.212110E-01
.937031E-02

PUPLPUEPTTVN

.651333E-01
.710642E-01
. B694GGE~-D]
.606630E-01

@ - O w

LT44437E-02
.764526E-02
.117587€E-02
.004750E-02
.001873E-02
.921600E-02
.201907E-01
.179976E-01
.399775€-01
.826456E-01

SIS U IR S S VU )

. 96G066E-02
.987563E-02
.007458E-C2
.525285E-02
.855182E-02
.779701E-02
.991651€-02
.008711E-02

neEeEeLrrne e

—

VLD @

~N PP

[CRV RV RTINS SN

e e o

.160355E+01

75085E+01

.983999E+00

.686519E+01
.7374288+01
.820300E+01
.536981E+01
.277147E401
.357947E+01
.278430E+401
.448521€E+01
.815512E+01
.627223E+01

.381757E+01
.G57419E+401
.701611€+01
.516E69E+01

4765508402

75732E+02

.472265E+02
L476079E+02
.379338E+02
. 344855E+02
.387467E+02
.334549E+02
.435058E+02
.385973E+02

.535623E+02
.954457E+402
972037402
.050974E+02
.162131E+02
LG37712E402
L742420E+02
.732355E+02

ELIMINATED IN THE ABOVE LISTS

520645
154138

280411
711624
846375
830322
820801
302002
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Table 6.

to slew response for

Closed-loop transfer characteristics, slew command
observer 3 (sheet 1 of 2).

S-PLANE
NUMBER REAL IMAG BAMPING FREQUENCY
1 ~1.004944%
2 ~10.5503700
3 ~10.3233856
& -11.42%378
5 -12.440531
7 ~12.065302 0.594815 9.687870E-01 1.207995E+01
9 -11.931503 1.418213 9.9300%8E-01 1.201549E+01
11 ~1.137760 22.7237¢85 5.000551E-02 2.275224E+01
13 ~1.287174% 22.591370 5.633412E-02 2.242801E+01
15 -9.875208 22.558701 4.011520E-01 2.462709E+01
17 -19.1423¢5 21.276001 6.686453E-01 2.85163%E+01
19 -28.973267 4.480728 9.882520E-01 2.931765E+01
I ~33.133865
2 ~19.6233% 29.55E842 5.58£20C2E-01 3.555204E+01
24 -23.0084¢C8 32.237333 5.803352g-01 3.50%46E8E+C
26 -11.955508 35.5833a79 3.190276E-01 3.746913E+01
28 ~7.103016 36.222835 1.976795E-01 3.593195E+01
39 -11.8%9165 39.7312%°3 2.857937E-01 %.146050E+01
32 -10.117865 40.6%5777 2.412711E-0) 4.153555E+01
34 ~2.355220 46.85104% %.99043%E-02 «.63027JE+0L
3 ~6.8%5651 137.735807 5.000019E-02 1.379123E+02
13 -6.552720 138.830525 G.995%96E-02 1.3%C545E+02
40 -6.897458 135.553747 5.082157E-02 1.357191€E+02
42 -7.320528 147.426270 5.000029E-02 1.470109E+02
44 ~7.235736 146.225311 4.642300E-Q2 1.464042E402
46 ~26.887207 145.02%877 1.822847E-01 1.475011E+02
48 -26.902%24 145.057587 1.823340E-01 1.475312E+02
50 -22.37%166 166.355112 1.511430E-C1 1.48C05618+02
52 ~17.697524 217.27¢077 8.113%2z20E-¢C2 2.17¢356E+02
54 ~19.0C6%70 217.6E5746 8.6662%GE-02 2.183z450E+02
56 ~13.010519 25%.835%033 5.00C817E-C2 2.6000958+02
53 ~1%.783228 295.0%33%3 4.639%23E-02 2.G50HEFE+02
00 -164.876577 237.122803 5.000516E-02 2.97434%3E+02
62 -16.131653 322.286121 5.000033E-02 3.226277E+02
64 -18.711212 373.755104 5.0C0002E~02 3.742Z261E+462
66 -18.828690 376.067139 5.000474E-02 3.765381E+02
THE FOLLOWING FOLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS
NUMBER REAL IMAGINARY
1 ~1.0049181
2 -1.0004549
4 -1.1766090 23.5027618
6 -6.8707¢666 137.7263452
8 -13.409%943% 267.836914
10 ~14.9596920 268.819136
%3 -15.2183362 306.042236
14 ~15.53624522 310. 3244643
16 ~18.6623077 372.779541
*

Input transform also included.
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Table 6. (Closed-loop transfer characteristics, slew command
to slew response for observer 3 (sheet 2 of 2).*
---------------- UNIQUE ZEROS-==~~==-~=--omum
1 -10.5328495
3 -12.623277 0.37%231 9. 1.001122E401
3 -11.6476E9 1.613541 S. 1.203
7 -9.73%529 5.65011% s. 1.1277%2E+C
] 6.152455 7.6554759 -2. 7.456326E+00
11 -1.137530 22.723%39 4. 2.275246E+C1
13 -1.287189 22.591400 5. 2.262€04%E+01
15 -19.1477¢6 21.292847 6. 2.863603E+01
16 -33.135216
18 -7.103048 35.222870 1. 3.503193E401
2 -11.955%01 35.535¢001 3. 3,745937E+01
22 -11.273847 39.850729 2. 4.151231E+01
26 -23.069473 32.25%059 5. 3.965508E+01
26 -2.345032 46.851105 4. 4.650375E+01
28 -43.446554 21.345001 8. 4.840577E+01
30 ~11.055975 55.068802 1. 5.616786E+01
31 -88.581650
32 52.545485
34 -6.885600 137.73%777 4.999991E-02 1.379122E+02
3 -6.933054 138.883392 5.0C0136E-02 1.350573E+02
33 -6.8%7325 135.5435%% 5.C3205%E-02 1 3571898400
49 -7.38041% 147.627200 5.020017E-02 1.476118E402
42 -7.235565 146.225250 4.942074E-02 1.6550C1E+C2
4% -26.895%(3 145.033401 1.8833758-01 1.4750228+02
45 -23.02¢559 144,397751 1.98+372E-01 1.470913E+02
48 -21.151711 147.524414 1.421833E-01 1.4$9337E+02
50 -17.697517 217.276108 8.118331£-02 2.179957E+02
2 -19.006409 217.655685 8.659C20E-02 2.184839E402
54 -13.005091 259.848389 4.999774E-02 2.601735E¢02
S6 -14.782550 295.28418 4.999952E-02 2.956533E+02
58 -14.865562 297.068504 4.957332E-02 2.974402E+02
60 -16.104558 321.6558287 4.997361E-02 3.222615E+02
62 -18.711197 373.755127 5.000011E-02 3.742231E+0C
64 -18.517227 371.971436 4.971977E-02 3.724310E402
THE FOLLOWING ZEROS MATCHED FOLES AND WERE ELIMINATED IN THE ABCVE LISTS
1 -1.0046171
2 -1.0004549
A ~1.1766090 23.5027618
6 -6.8707666 137.243652
8 -13.4099542 267.834914
10 -14.95%5%20 £78.816336
12 -15.2158453 304.0%2236
14 -15.5362911 310.3064%3
16 -168.6623077 372.779541

*

Input transform also included.
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S — 4 - -
X, A +BX 0O 0 B,X, %
%, 0 A, 0 BK, x,
N B,K, 0 A, B,K, x, (32)
_é_‘ 3 0 0 G, A - GC-— __e_

and the closed-loop system is again unstable.

The final design is of dimension 22, and uses an output transform
to spatially filter the system output. The closed-loop equation has
the form

—. ~ . A
xl Al + BlKl 0 0 BlKl 51
X, BKy Ay 0 BKy %,
. = (36)
X, BK, 0 B, B,K, £
e 0 GT.C GT.C A. - GT.C e

L | 372 373 1 371 L §

If Eg. (32) 1s satisfied, then Egqg. (36) becomes

X —A1 +BK 0 0 BJK, | Fﬁl—

1| BX Ay O B2 %

X, ) B.X, 0 A, B,K, X, (37
l_é_ i 0 0 0 A - G'r3cl —_e_J

Observation spillover has been eliminated and the closed-loop system is

1t Bk

and [Al - GTvcl]. Returning to Table 6, one can verify that the
-~

stable. 1In fact, the poles of Eg. (37) include the poles of [A

A A

2" 73
numerical results can also be categorized this way.
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The results presented here illustrate the effect of spillover,
and demonstrate that a singular output transform can be used to eliminate
the observation spillover from a finite number of modes. 1If observation
spillover is eliminated, the unmodeled plant modes will still be excited

by the controller (BzK X, B Kli), but the overall system will be stable.

1 3

In the case considered above, enough outputs are available to

eliminate spillover from the 52 and Xy modes. Using an evaluation model

which includes Xy 52 and all of Xy one can calculate the closed-loop

eigenvalues (see Table 7). Again the regulator, observer, A2, and A3

modes are included in the evaluation model,

poles

are uncoupled. If 54 or 55

then the effects of spillover will be seen. However, by filtering the

52 and §3

the .9 information and the residual mode spillover.

states, the transform creates a frequency separation between

3.3.2 Input Transforms

The optical performance requirements of the M2V2 satellite dictate
that the set of modes {23, 26, 28, 29, 30} be isolated from the disturbing
effect of control action. These modes are higher in freguency than all
the 51 modes, and are not explicitly included in the quadratic cost
expression. As illustrated earlier, the baseline optimal control law
does in fact excite this set of modes. If the level of excitation is un-
satisfactory from a system's viewpoint, two options are available. One
alternative is to include these additional modes in the performance index.
This course of action is undesirable because it increases the dimension
of the optimal control law. The other alternative is to use an input
transform to constrain the sgpatial content of the control. To illustrate
the effects of the input transform, two configurations are compared.

These configurations are shown in Figure 23. Both have the same plant
model, and the same observer to process the plant output signal y and to

estimate x The configurations differ only in the control law. Configura-

1
tion 1 uses a control law of the form

u = K.x (38)
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Table 7. Closed-loop transfer characteristics, slew command .
to slew response for X XXy plant model (sheet 1 of 2).
---------------- UNIGUE POLES---=-=-=w=v==uu-
S-FLAME
NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.012961

2 -1.005196

3 -1.€00736

4 -6.380075

6 -11.4%5717 0.171995 9.998882E-01 1.149300E+01

3 -12.032524 6.571587 9.988737E~01 1.204605E+401

9 -12.64393%8

10 -12.855002

11 -10.245658

13 ~1.137719 22.723770 5.000474E-02 2.275223E+01
15 -1.237823 22.667725 5.452504E-02 2.270149E+01
17 -8.324352 22.056303% 3.530093E-01 2.335119E+01
18 -25.95%095

h] ~28,95513% 6.446473 9.5824217E-01 2.93046435+01
22 -19.102529 20.9248:6 6.7%22165-01 2.83331€E+CL
24 -21.1723%4% 30.9453C3 5.646746E-C1 3745455640
2% -17.785751 35.355451 4, 495571E-01 3.9525122+01
s -11.933570 35.566082 3.195841E-01 3.751335E+01
30 -6.4580253 35.354639 1.802400E-01 3.575346E+01
32 -11.847562 39.729355 2.,857709€-01 4.1653255401
34 -10.118303 40.696536 2.412815E-01 4.193557E+01
3% -2.345032 46.851089 4.933029E-02 4.620974E401
38 -6.553517 138.832187 5.000510E-02 1.350561E+02
40 ~6.742580 135.218518 4.980231E-02 1.3538595+02
42 -7.3805% 147.6426270 5.0CCC34E-02 1.676109€+02
44 ~18.366882 146.334518 1.24535%E-01 1.673825E402
a8 -22.372547 146.3816439 1.511232€-01 1.480822E+02
48 -23.743332 145.5323958 1.609592E-01 1.675114E+02
50 -20.2792¢5 215.531540 9.36535CE~02 2.165335E+02
52 -17.621277 218.651491¢0 8.031523E-92 2.193998E+02
54 ~13.01¢453 259.824033 5.035003E-02 2.6020°3E402
36 -13.408319 057.0035%0 5. 2.6816T0E+C2
s3 -14.782457 235.2956564 4, 2.6553538402
60 -14.874912 297.126465 4. 2.9745358+02
62 ~16.131373 22.224121 4. 3.226277E+C2
64 -18.711212 373.7561064 5. 3.7422G61E+02
66 -18.8265¢8 376.067333 5. 3.765383E+02
68 -18.868114 376.432617 5. 3.765041E+02
70 -19.749481 394.5024641 4.9933156-02 3.949963E+02
72 -22.9295¢8 448.338562 4.935923E-02 4.4S95%2E402
74 -22.891510 457.258057 4.9393%E-02 4.578306E+Q2

THE FOLLOWING ZEROS

2 -1.
4 -6.
6 -6.
8 -7.
10 -14.
12 -15.
14 -15.
16 -18.
18 -29.
2 -22.

1766050
8957251
8707329
3597260
9596624
2212658
5341339
6623230
4317169
1532440

MATCHED POLES AND WERE

23.
137.
137.
146.
298.
304.
310.
372.
408.
445,

ELIMINATED IN THE ABOVE LISTS

5027618
739944
243713
556191
818848
044189
316162
779541
036914
002159

Input

transform also included. g4




Table 7. Closed-loop transfer characteristics, slew command to

slew response

for x

1%2%3

plant model (sheet 2 of 2).*

1 -1.005261
2 ~1.0837390
3 -10.4155C2
5 -11.623823
6 -12.8%2%7¢0
7 ~12.25229%
b4 -5.3303z27
11 0.508830
13 ~1.137522
15 -1.237846
16 ~25.981155
18 ~19.1094%06
20 ~19.411041
c2 -11.983514
2% -6.48037
26 -11.175737
2 -2.3%44984
30 -48,02833%6
32 17.652672
34 -6.552831
35 -6.74255%
33 -17.14C053%
40 -7.372447
42 -13.778550
44 -2%.61CS55
46 ~-63.776683
48 -20.277786
50 -17.622528
52 -13.009516
54 -13.4C8500
56 -164.761109
58 ~14.871683
60 -16.123535%
62 -~18.711029
6% ~18.934C85
&6 -18.843312
68 ~19.743710
70 ~22.429733
72 -22.846539

0.141160

6.329781
6.610679
22.724045
22.667740

20.930420

34,196747

35.546143

35.364543

40.630679

46.851273

25.294910

57.511398
133.882339
135.218%03
116.65000%
147.483505
146.527785
145.7380345
139.703751
215.581070
218.692062
259.679833
267.829590
295.238525
2%7.111328
322.178223
373.7543%5
376.558359
376.432129
3%4.50249461
445,395¢682
456.93%209

9.999263E-91

6.461347E-01

-1.361280E-01

4.999556E-02
5.652706E-02

6.742507E-01
4.936455E-01
3.185870E-01
1.802437E-01
2.666276E-01
4.95850%E-02
8.854735E-01

~2.979825E-01

5.000773£-02
4.930C41E-02
1.453571E-01
4.992558E-02
9.342072E-02
1.664685E-C1
4.152854E-01
9.354766E-02
8.032107E-02
4.999716E-C2
5.000092E-02
4.993488E-02
4.9391¢8E-02
4.998285E-C2
4.999375E-02
5.034947E-02
5.000331E-02
4.83%373E-02
4.9659540E-C2
4.953757E-02

PN

L L UHUOLULULUHUNDPMNRUONHEEMHEMHRHEOCRS VU WN

.575

.162%68E+01

L275174E+00
.672357E+00
.275250E+01
.2T0151E+01

.834169E+01
.63218CE+01
.751345E+01
.595338E+01
.194634E+01
.69C9S1E+0L
L4R4e0232+01
.02424CE+01
.35356324C2
.353269E4C2
L1791258+02
LATESTHE402
LGTLITSR1ECE
LGTERBIECT
.5357CEE+C2
.165326E+0C
.154005E+02
L602051E+402
.681650E+02
. 9550728402
LOTHBIZE+02
.225513E+02
LTH2224E+02
LT7CH69E+C2
LT63035E4C2
LGGRTH3EHC2
Q8%

31E+02

532
100E+C2

THE FOLLOWING FCLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER
2 -1.
4 -6.
6 -6.
8 -7.
10 -l4.
12 -15.
le -15.
16 -18.
18 -20.
20 -22.

REAL

1766950
8957253
8707829
3597228
9596577
2212582
5341311
6623230
4317169
1532440

IHAGINARY

23.
137,
137.
146.
.813348
304,
310.
372.
408.
445,

258

5027618
739507
263713
596191

044189
316162
77541
086914
004150

*
Input transform also included.
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Figure 23. Alternate controller configuration: mode isolation.

86




where Kl is the baseline optimal gain matrix. Configuration 2 uses a

control law of the form

2°1

where the columns of T2 are orthogonal to the rows of the input distri-

bution matrix B, which correspond to modes 23, 26, 28, 29, and 30. El

is the optimal constrained gain matrix. The matrix Tzil has the same

dimensions as the matrix Kl'

The optimal control law, Eg. (38), minimizes the quadratic per-

formance index

@
T T
J = /51R13‘—1 + WR,u dt (39)

subject to the constraint

% T BME TBE (40)

Any other choice of control will imply an equal or greater cost.

The gains K. were selected by minimizing the same performance

1
index

o«
T— T
J = /51R1—’51 + WR,u dt (41)

subject to two constraints

% T A% B 42)

(43)

Te
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This second constraint restr.cts the spatial content of u.

Equations (41}, (42), and (43) can be rewritten

< T —I- —
J = /illel + uRyu dt (44)
t0
. - . —
£ a)x + B, T u (45)
where Ez is given by
- T
R, = TR, (46)
The control which minimizes J is
where
p— __l —_—
Kl = R2 BszP

and P is the solution to the appropriate algebraic Riccati equation.

=T - = = - -1 T T
0 = PA+AP+R1~PBlT2[R2] TZBP (47)

The trace elements of the cost matrices P and P are compared in
Table 8. These elements reflect the cost of nulling a unit initial con-
dition on any 51 state. As expected, the optimal control law costs are
lower in every case than the corresponding costs of the spatially con-
strained control. Similarly, the poles of [Al + lel] are {(see Table 9)

incrementally faster than the poles of [A1 + Bszfll. The decrease

88




Table 8.

Cost comparison.

Mode

Optimal Cost

Cost with

Input Transform

Displacements

4 1.716 1.730
5 1.844 1.949
6 1.852 1.862
7 289.249 342.145
10 0 0
11 73.145 78.539
12 36.545 39.789
13 54.002 56.656
20 536.035 624.594
21 539.150 696.428
22 8315.590 13287.459
Velocities

4 0.052 0.066
5 0.205 0.353
6 0.214 0.228
7 0.686 0.745
10 0 0
11 0.056 0.060
12 0.020 0.024
13 0.025 0.0726
20 0.024 0.027
21 0.024 0.031
22 0.174 0.279
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in % dynamic performance is the penalty associated with the spatial con-
straint. The benefit of the constraint is best illustrated in the time
domain. Figures 24 and 25 compare the time responses of the two systems

to a unit initial condition on each x_ displacement state. Several

1
observations can be made.
(1) Modes 4, 5, 6, 7, 10, 11, 12, 13, 20, 21, and 22 are 51
modes and are controlled. The time response of the X,
modes for the optimal law is slightly faster than the
response provided by the constrained law. This is con-

sistent with the closed-loop pole analysis.

(2) Modes 8, 9, 14, 15, 16, 17, and 18 are 52 modes. The
dynamics of these modes are not fed back because of T3.
There is evidence of control spillover, however, for both

control designs. (Mode 19 not shown.)

(3) T2 is designed to suppress control spillover for modes 23,
26, 28, 29, and 30. The time-history traces indicate that
the optimal control law excites these modes. The constrained
design, on the other hand, shows sharply reduced excitation
levels except for mode 29. In theory, the excitation can be
suppressed completely. 1In practice, there is a tradeoff be-
tween suppressing modes and retaining control authority over
x., modes. This topic is discussed in Appendix H, including

1
the reason for allowing spillover into Mode 29.

In summary, an input transform can be used to suppress control
spillover into a set of uncontrolled modes. The penalty for implementing
the transform is an increase in cost. The tradeoff between the sgpillover

suppression and the cost penalty can be done at the systems level.

An additional comment, which is appropriate here, is that cost

reflects the dynamics of only x Any plant/controller interactions

1
which occur outside X, space are not seen in the performance index. This
point has been made previously. It is repeated here to emphasize that
transforms have a much greater impact on the system than the performance
index alone would indicate.
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Figure 24. Output transform (sheet 1 of 6).
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Figure 24. Output transform (sheet 6 of 6).
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3.3.3 Residual Mode Effects

The preceding sections illustrate the properties of input and‘
output transforms in a closed-loop system context. Of particular inter-
est are the control and observation spillover~suppression properties.
However, the number of modes which can be suppressed is finite and, if
the number of residual modes is greater than the number of suppressed
modes, some spillover will occur (see Appendix A). The introduction
advances the hypothesis that if input and output transforms suppress
the interleaved residual modes, and enough additional modes can be
suppressed so that there is a frequency separation between controlled
and residual modes, then frequency~domain techniques can be used to
account for the remaining residual modes. Consider the M2V2 plant as
an example. If the transforms T2 (input) and T3 (output) are intro-
duced, the control to observed output signal paths (see Figure 26)

will contain Xyr Xy and Xg information. Then, if a controller of
the form

19>
|

1 = Alil + BLE + GT3[y - Clxl] (48)

is implemented, (il from Section 3.3.2, G from Section 3.3.1) spillover

from X, and higher frequency residual modes will occur. This spillover

can be expected to adversely affect closed-~loop performance. Specifically,

a plant of % and LA dynamics was cascaded with the controller above (see
Figure 27). Table 10 gives the closed-loop poles for this configuration.
Based on discussions in Section 3.2.3, one would expect spillover to af-
fect both the closed~loop poles and the unmodeled plant poles. The
numerical results bear this out. The observer poles (at -12 + 0j)

have migrated, as have the high-frequency X, poles. There is a distinct
frequency separation between x. and x,, however, and the singular per-

1 =4
turbation techniques of Section 3.2 and Appendix E should be applicable.
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Table 10. Closed-~loop poles and zeros, slew command to
x, plant (sheet 1 of 2).

slew response for x

1’ 24
---------------- UNIGUE POLES--=--v-m=mw=voua
S-PLANE
NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.013303

2 -1.005209

3 ~-1.000392

4 -5.050219

6 -9.572584 0.791795 9.965966E-01 9.605274E+00

8 ~12.248342 1.567404% 9.919112€-01 1.234822E+01
10 -7.8%6777 6.165940 7.881898E-01 1.0018E8E+01
11 ~-17.293930

12 ~-25.011749

14 -7.681919 21.380539 3.381319E-01 2.271870E+01
16 -16.932022 20.992416 6.278123E-01 2.696%83E+01
18 -16.261611 33.662659 3.900574E-01 3.655910E+01
20 -6.251226 35,3712%92 1.74C367E-01 3.591933E+01
2 -16.156561 35.818222 4.1123%2E~01 3,92647%E+401
24 -22.058%14 32.533920 5.611935E-01 3.930716E+01
26 ~9.925739% 40.293793 2.39184CE-01 4.14%331E+01
28 ~13.225443 40,912445 3.075%00E-01 4,2955%5E+01
30 -33.674622 22.6408234 8.3252338E~01 4.046384E+401
32 -7.380591 147.426270 5.003031E~02 1.476109E+02
34 -18.239471 146,982559 1.231482E-01 1.481099E+02
36 -19.691284 143.373672 1.360651E~01 1.64719¢E+02
38 ~26.942505 149.447433 1.774206E-01 1.518564E+02
40 -23.399048 188.200195 1.233307E-01 1.895452E+02
42 -11.963984 219.641251 5.433954E-02 2.199568E+02
44 ~23.507065 469.643799 4.999039E-02 4.702317€E+02
46 -24.157578 477.8393844 5.049133E-02 4,784500E+02
48 ~31.554672 539.8%82334 5.836666E-02 5.408137E+02
50 -<6.593765 571.815430 4.645740E-02 5.7264333E+02
52 -27.649502 607.8918%6 4.543793E~02 6.085203E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER

[+ e BN S

REAL

~1.17660%0
~27.1470642
-29.1265259
-30.3554840

IMAGINARY

23.5027618
542.287109
552.700684%
606.320557
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Table 10. Closed-loop poles and zeros, slew command to

slew response for 51,

x,

plant (sheet 2 of 2).

~1.005443
-1.000397
-6.136703
-9.495000
-4.506025 6.337749
0.881102 6.590878
-16.853185
-15.017513 7.981828
-24.974045
~16.935242 20.978592
-19.075562 33.859740
-~16.168%00 35.824432
-6.051682 35.371613
-11.387346 40.522385
-47.40675% 25.131973
18.161652 57.403748
-17.331757 116.419693
-13.7%3817 146.473346
-7.3721%9 147.48370%
-26.665843 155.225593
~62.854374% 142.7737€8
~23.405515 183.197205
~11.966111 219.6%1068
-23.507019 469.644043
-24.157547 477.839344
-31.527542 539.855957
-26.593735 571.815430
~27.662201 607.906250

THE FOLLOWING ZEROS MATCHED POLES AND WERE

2 ~1.1766050 23.
4 -27.147Ce42 552.
6 ~29.1265259 552.
8 ~30.3554840 606

5.794539E-01
-1.325062E-01

8.830240E~01

6.281349E~01
4.905069E-01
%,113731E-01
1.740459€E-01
2.705458E-01
8.835236E-01
-3.016471E-01
1.472502E-C1
9.37576%E-02
4.992520E-02
1.674G59E-01
%.029234E-01
1.234389E-01
5.43%756E~02
4.939026E-02
5.049127E-02
5.830060E~-02
4.645735E-02
4.545701E~-02

ELIMINATED IN THE ABOVE

5027618
287109
700684

.320557

.776331E+00
.649511E+00

>~

[

.70C691E+01

.696115E+01
.836948E+01
.930423E+01
.591983E+01
.209212€8+01
.3656G6E+01
.02C827E+01
-177027E+02
.671219E+02
L4TE578E+02
.G73055E+02
.5559T71E4C2
L855470E+02
L185267E+02
.7023198+02
.784500E+02
L407755E+02
. 724333E+02
-085354E+02

CUWMEFLNDHAEEEHECU S WP

LISTS
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For the specific case under consideration here, singular perturbation

theory suggests that the observer be modified.

A X + BLu + Gly - 9)

1

15>
il

R -1 —
T,C %, + T,C,A,"B,T,u (49)

L5y
]

The dc correction term T3C4AZlB4T2 is a 4x10 matrix (dim [;] x dim (u]).

C4A;184 represents the static deformation of residual modes due to unit
loads at the actuators as observed at the sensors. This matrix will
converge for a large enough number of residual modes because the static

displacement of a structure is smooth and bounded. Table 11 shows the
convergence of T3C4A;184T2 as one, two, three, etc., of the 54 modes are

included.

The modified observer was implemented for the X0 Xy
the closed-loop characteristics are given in Table 12. The correction

plant, and

term returns the observer poles to "prespillover" values, but has a less
®
pronounced effect on the residual modes. This is intuitively correct:

the dc term is fundamentally a low~frequency correction.

The X%, plant serves to illustrate the effect ot residual modes,

but it assumes that T2 and T3 completely suppress the %, and 33 modes.

If the modified controller is applied to an x.x _x_x plant, an inter-

1—2—3—4
esting comparison is available.
(1) Table 13 gives the poles of an unmodified controller on

an §L§2§3 plant.

(2) Table 14 gives the poles of a modified controller on an
X XX X, plant.
(3) Table 12 gives the poles of a modified controller of an

X X, plant.

* Compare Tables 6, 10, and 12.
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Table 12.

Closed-loop poles and zeros, slew command to slew
response for X0 X, plant, dc correction included

(sheet 1 of 2).
---------------- UNIQUE POLES====vememmeemnnx
S-PLANE
NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.012940

2 -1.005177

3 ~1.000744

5 ~11.691469 0.472293 9.991851€-01 1.170100E4+01
7 ~12.271549 0.426408 9.993969E-01 1.227865E+01
9 -11.907426 0.984103 9.966022E-01 1.194802E+01
10 -10.437132

11 -6.378399

12 ~25.977539

1% -29.046371 4.679237 9.872715E-01 2.942085E+01
16 -8.324568 22.054962 3.531443E-01 2.357384E+01
18 -18.976929 21.119812 6.683630E-01 2.839314E+01
20 ~21.148926 30.951050 5.641731E~01 3.748555E+01
22 -17.792%23 35.337494 4.497226E-01 3.955421E¢0L
24 -12.101912 35.529$561 3.224223E-01 3.753435E+01
26 -6.467656 35.431305 1.755734E-01 3,601677E+01
28 -11.851106 39.740463 2.857761€-01 4,145589F+01
30 -10.121757 40.652001 2.413852E-01 4,193156E+01
32 -7.380593 147.426270 5.000032E-02 1.476109E+02
36 ~18.347107 146.270096 1.244578E~01 1.474162E+02
36 -22.Q92773 145.536942 1.500824£-01 1.472062E402
38 -24.123764 146.663467 1.623029E-01 1.4863G2E+02
40 ~22.358002 211.578451 1.050872E-01 2.127565E+02
42 -15.382879 219.692368 6.984901E-02 2.202303E+402
44 -23.507050 969.644043 4.999033E-02 4,702319E+02
46 -24,166153 477.837158 5.050949E-02 4,784478E+02
48 -31.528839 539.871094 5.830133E-02 5.407910E+02
50 -26.542984 572.176514 4.633968E-02 5.727917E+02
52 -27.664230 607.503076 4.546058E-02 6.085322E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER

oSN

REAL

-1.1766090
-27.1470642
-29.1354675
-30.3554840

IMAGINARY

23.5027618
542.287109
552.672607
606.320557

b
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‘4.

Closed-loop poles and zeros, slew command to slew

x, plant, dc correction included

Table 12.
response for X0 X,
(sheet 2 of 2).
e UNIQUE ZEROS
-1.00522
~1.006748
-10.155846
-11.938153 0.917669
~12.161644 1.020272
-5.328587 6.326995
0.908337 6.610736
-25.982590
-18.977676 21.116013
-19.410522 34.196396
-12.101197 35.529922
-6.467691 35.43127%
-11.176970 40.432083
-48.030716 25.204117
17.952332 57.502731
-17.155441 116.653046
-24.617371 145.735733
-13.782695 146.511215
~7.37238% 147.483429
-63.925949 144.09427
-22.353856 211.573595
-15.383151 219.69227
-23.507019 469.644043
-2%.166122 477.837158
~31.501404 539.835449
~26.542953 572.176758
-27.676620 607.917236

9.9705%9E-01
9.964954E-01
6.4417T6E~01
=1.361979€-01

6.684443E-01
4.936393E-01
3.224047E-01
1.795745E-01
2.66444%9E-0L
8.854630E-01
-2.9€0137E-01
1.454988E-~01
1.665584E-01
9.365%10£-02
%.992554€-02
%,.153513E-01
1.050910E-01
6.905033E-02
%.995026E-02
5.050943E-02
5.8254%63E-02
%.633960E-02
4.547985E-02

1.197336E+01
1.220637€+01
8.271621E+00
6.672915E+00

2.839081E+01
3.932126E+01
3.753418E+01
3.601674E+01
4.194852E+01
5.426202E+01
6.023994E+01
1.179073E+02
1.478002E+02
1.471581E+02
1.476676E+02
1.53%082E+02
2.127571€E+02
2.202302E+C2
4.702315E+02
4.78447TSE+0R2
5.407537E+02
5.727920E+02
6,085469E+02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

[ B B ]

-1.1766090
~27.1470642
~29.135%675
~30.3554840

23.5027618
542.287109
552.672607
606.320557
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Table 13. Closed~loop transfer characteristics, slew command to
slew response for X,, X5, X, plant model, unmodified
controllexr only 20 §3 states included {(sheet 1 of 2).

------------ ~~e~UNIQUE POLEG-m==-=cac-env=an
S~PLANE
NUMBER REAL IMAG DAMPING FREQUENCY

1 ~-1.012941

2 -1.005194

3 -1.000739

q -6.379978

6 ~12.005551 0.081773 9.999768E-01 1.200593E+01
8 ~11.606636 0.7481693 9.979287E-01 1.163073E+01
10 -12.472207 0.67$230 9.985204€E-01 1.249069E+01
11 ~10.235530

13 -1.137719 22.723770 5.000474E-02 2.275223E+01
15 -1.238274 22.667587 5.454620E~02 2.270137E+01
1?7 -8.3263%% 22.063036 3.53005%E-01 2.35811%E+01
18 -25.951760

20 ~28.966324 4.450431 9.854021E-01 2.930621E+01
22 -19.033351 21.091451 6.699506€-01 2.64095C2E+01
2% -21.172241 30.545992 §.646721E-01 3.74S375E+01
b -17.765383 35.356543 4.455525E-01 3,958526E+01
28 ~12.000372 35.537:2 3.199355E-01 3,750851E¢01
30 -6.4819%8 35.365731 1.802616E-01 3,595883E+01
32 ~11.847546 39.729340 2.857707E-01 4.145822E+01
34 ~10.118307 40.696686 2.412816€-01 4,153567E+01
36 -2.345032 46.851089 4,995009€-C2 4.690974E+01
38 -6.953511 138.8382172 5.000507E-02 1.390561€+02
40 -6.742848 135.219208 4,980417E-02 1.353872E+02
42 ~-7.380595 147.6426270 5.000034E~02 1.476109E+02
44 -18.366852 146.334412 1.245357E-01 1.474825E+02
46 -22.378693 1464.381577 1.511233E-01 1.480823E+02
48 ~23.743332 145.588358 1.609592E-01 1.475116E+02
50 -19.276627 217.058307 8.846915€-02 2.179131E+02
52 -18.671051 217.720505 8.534332E-02 2.1351668+02
56 ~13.010483 259.864033 $.000203E-02 2.602065E¢02
1 -13.408322 267.8265%0 5.000026E-02 2.68165JE+02
58 -14.782457 295.295654 4.999727E-02 2.956653E+402
60 -164.874912 297.126465 %.599995E-02 2.974985E+02
62 -16.131378 322.224121 4.999998E-02 3.026277E¢02
6% -18.711212 373.756104 5.0000028-92 3. TLINGTF 40D
66 -18.828568 376.067383 5.000438E~02 3.765383E+402

THE FOLLOWINS POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

REAL

-1.1766090
-6.8957253
-6.8707829
-7.3594818
-14.9596877
~15.2212582
~15.5341215
-18.6623230

IMAGINARY

23.5027618
137.73%307
137.243713
146.595718
298.818348
304.044189
310.316162
372.779541

b = e et e Arp———— v T -
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Table 13. Closed-loop transfer characteristics, slew command to
slew response for x,, x5, X, plant model, only 20 e
states included (sheet 2 of " 2).
---------------- UNIQUE ZEROS-~veeocnamemcnnnas
1 -1.0C5241
2 -1.009743
3 -10.402925
5 -11.534787 0.713511 $.981082E-01 1.160674E+01
7 -12.481441 0.648710 9.986520E-01 1.269829E+01
9 -5.330287 6.329798 6-441309E-01 8.275161E+00
1 0.508833 6.610667 -1.361986E-01 6.67084TE+00
13 ~1.137522 22.726045 %.999546E-~02 2.275250E+01
15 -1.238297 22.667603 5.4546718E-02 2.270140E+01
16 ~25.980469
18 ~19.039358 21.097260 6.699724E-01 2.841818E+01
20 -6.482110 35.369690 1.602651E-01 3.595876E+01
2 ~12.000528 35.537201 3.199356€-01 3.750873E+01
2 ~19.411072 364.196762 %.936458E-01 3.932185E+01
26 ~11.175798 40.430679 2.664275E-01 4.194685E+01
2 -2.344983 46.8651273 %.998S07E-02 4.690991E+01
30 ~48.028412 25.204819 8.854744E-01 5.424031E+01
32 17.9328%6 §7.511246 -2.979821E-01 6.024823E+01
34 -6.953391 138.88232¢ 5.000774€-02 1.360563E+02
36 -6.742851 135.219193 4.530407E-02 1.383370E+02
38 -7.372468 147.433595 4.952535E-02 1.476676E402
40 ~13.777%6% 1646.527878 9.361672E-02 1.471742E+02
2 -17.1642822 115.658515 1.453372E-01 1.179114E+02
4 ~24.61079% 145. 780359 1.664655E-01 1.478432E+02
a6 ~63.770187 139.704300 %.132500E-01 1.535706E+02
%8 ~19.269455 217.055725 8.842374E~02 2.179094E+02
50 ~18.678070 217.723923 8.5G7390E-62 2.185235E+02
52 -13.006518 259.879833 4.999717E-02 2.602051E+02
s6 -13.408503 267.829590 5.000093E-02 2.681650E+02
56 -14.761139 295,238525 4.993495E-02 2.956072E+02
58 ~14.871689 297.111328 4.999170€E-02 2.9768: E+02
60 -16.123550 322.178223 4.968290E~0C 3.225813E+02
62 -18.711029 373.754365 4.999975E-02 3.742226E402
6% ~18.953688 376.566406 §.034364E-02 3.770447E+02
THE FOLLOWING ZERGS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS
2 ~1.1766090 23.5027618
4 -6.8707829 137.243713
6 -6.8957251 137.7399%44
8 ~7.3594780 146.595718
10 -14.95966264 298.818548
12 -15.2212658 304.044189
16 -15.5361244 310.316162
16 -18.6623230 372.775541
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The X xq spillover effects are small, and if residual modes are included
and accounted for with a dc correction, the low-frequency effect is aliso
small.

3.4 Discussion

For purposes of controller design, the dynamics of the M2V2 space-
craft were modeled by a 44-mode state space model. As a starting point,
this model can be assumed to be an accurate representation. Then, one
control option is the optimal regulator discussed in Section 3.2. The
requlator meets X performance requirements with minimum control cost.

Its deficiencies are dimension, and control spillover into modes 23, 26,
28, 29, and 30. The discussion in Section 3.3 motivates an alternate con-
troller design (Eq. (49)) which is a synthesis of transform, singular
perturbation, and optimal linear feedback ideas. The performance cost
associated with this alternate is higher, but it is of dimension 22 in-
stead of 88, and the excitation of modes 23, 26, 28, and 30 is dramati-
cally lower. The closed-loop poles of this controller and an X0 X0 53,54
plant are given in Table 14.

The 44-mode model is, in fact, not a complete representation of
the M2v2 vehicle. If distributed mass and stiffness are acknowledged,
then high-frequency residual modes must be accounted for. In theory,
both the regulator and the reduced-order design can be made asymptotically
correct by subtracting a dc residual correction from the system measurement.
In fact, this procedure is more valid for the reduced-order design because

a frequency separation can be identified.
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Table 14. Closed-loop transfer characteristics, slew command to slew
response for xj, x2, X3, X4 plant model, modified controller,
(only 20 x3 states included) (sheet 1 of 2).

S-FLANE
NUMBER REAL IMAG DAMPING FREQUENCY
1 -1.012%40
2 -1.0C5191
3 ~1.000743
4 -11.76S¢886
5 -6 .378546
6 -12.294503
7 -10.205%33
9 -11.521257 1.143831 9.951079€-01 1.157794E+01
11 -12.427792 1.004272 9.967509E-01 1.246830E+01
13 -1.137719 22.723770 5.00047%E-02 2.275203E401
15 -1.238747 22.667480 5.456723E-02 2.270129E+01
17 -8.3255¢6% 22.057739 3.531312E-C1 2.357665E+01
18 -25.933263
< -29.033757 4.677201 9.872762E-01 2.631301E£+01
< -18.67C2¢1 21.234848 6.662204E-91 C.ESTA3T7E0L
24 -21.155283 30.931843 §.€427%3E-C1 3.7%°0C01E401
26 -17.79354%9 35.343033 4. G957C9CE-CGL 3.956555E401
< -12.0232¢5 35.550856 3.203376E-01 3.753C15%+01
30 -6.433103 35.356166 1.803150E-01 3.595351E+01
32 -11.851358 39.735105 2.857%03E-02 4.14535TE+01
34 ~10.121520 40.652683 2.413762€E-01 4.193256€+01
36 -2.3%5333 46.851089 4.995031E-02 4.650974E+01
38 -6.95345%3 138.882217 5.000456E-02 1.360562E+02
«Q -6.743121 135.218048 4.%80661E-02 1.353851E+02
@2 -7.3805¢6 147.426270 5.000034E-02 1.47610°E+02
44 -18.347483 146.26%669 1.244507E~-01 1.474159E4+02
45 ~22.091125 145.535560 1.500728E-01 1.472C27E+D2
48 ~36.125168% 146.654932 1.623105€-01 1.4846359E+02
50 -22.371307 211.548¢839 1.051635E-01 2.127285E+02
52 -15.372473 219.6%58%2 6.530001E~02 2.202330E+02
5% -13.012483 £59.655033 5.000003E-CC 2.60C2075E+02
$5 -13.4C8273 267.82¢5%° 5.000008E-6G2 C.E318ETEHC02
&8 =13.73245% 235.2%5534 4.939726E-02 2.752e53%422
60 ~14,874%12 297.126445 4.999335E-02 2.974% k402
62 -16.131378 322.224121 %.999358E~02 3.226277E+C2
6% ~18.711212 PR REIVIRE ] divverom- - e emecNLIEPUL
66 ~18.828568 376.067333 5.000438€-02 3.765353E+02
63 ~23.5%97050 469.644063 4.999033E-02 4.70C31CE+02
70 -34.165168 477.637158 5.050852€-C2 4.T7EA9TEEL02
72 -31.522¢54 53%.6710%% 5.83013¢E-02 5.407°1CE+02
74 ~26.532959 572.176516 4.633°585E~02 5.727S1TE+C2
76 ~27.664239 607.90307¢ 4.546052E-C2 6.0E5322E+02
THE FOLLOWING POLES MATCHED ZEROS AMND WERE ELIMINATED IN AEOVE LISTS
NUMBER REAL IMAGINARY
3 -1.1766090 23.5027618
4 -6.8957253 137.739807
[ -6.8707829 137.243713
8 -7.35889¢C5 146.597519
10 -14.9596577 298.818348
12 -15.2212582 304.044189
14 -15.5341025 310.315674
16 -18.6623230 372.779541
18 -27.1470642 542.287109
H -29.1354828 §52.672607
22 -30.3554840 606.320557
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Table 14. <C(losed-loop transfer characteristics, slew command to slew
response for X1, X2, X3, X4 plant model, modified controller,
(only 20 x3 states included) (sheet 1 of 2).

------------- “<~UNIQUE ZEPQS-=scwmmmmmmmemnn
1 -1.005238
2 ~1.€2074%6
3 -10.035799
5 -11.7C4853 1.117295 9.954774E-01 1.175804E+01
7 -12.43508% 1.115581 9.959326E-01 1.2645914E+01
9 -5.327583 6.327348 6.641139E~01 8.271802E+00
11 0.908854 6.610687 -1.361941€-01 5.672852E+00
13 -1.137522 22.724045 4.999536E~02 2.275250E+01
15 -1.2338771 22.667511 5.456324E~02 2.270132E+01
16 -25.533216
18 -18.975922 21.240570 6.662331E-01 2.848241E+01
z -6.483232 35.3640%0 1.80322%E-01 3.565346E401
22 -12.023262 35,552948 3.203561E-01 3.753093E+01
FIS -19.405821 34,166930 4.936200E-01 3.932133E401
26 -11.176941 40.432022 2.664347E-01 4.199544E+01
: -2.346982 46.651273 4,993595E~02 +.693921E+01
39 -48.032059 25.202240 8.855056€E-01 5.426234E+01
32 17.952667 57.507050 -2.979984E-01 6.024415E401
1% -6.953253 138.832355 5.C00749E-02 1.390553£402
% -6.743133 135.2135033 %.9304TCE~02 1.353350E+02
38 -7.372416 147,433515 4.992573E-02 1.4766775+02
%0 -13.7775.8 146.8146420 9.340507E-02 1.471502E+02
« -17.165115 115,650549 1.455549E-02 1.173558E+02
44 -26.615522 145.739332 1.665735E-01 1.477007E+02
46 -63.£45556 160.049118 4.148035E-01 1.535155E+02
«8 -22.371918 211.548574 1.051665E-01 2.127265E402
53 -15.372672 219.695¢53 6.980181€-02 2.202331E+02
52 -13.¢0$515 259.879383 %.999716E-02 2.602051E402
54 -13.403455 267.8293%6 5.000055E~02 2.681646E+02
56 ~14.761032 £95.215525 ¢.993462E~02 2.956072E+02
58 ~14.871675 297.111323 4.999165E~02 2.974532E+02
60 -16.123535 322.17822 %.993286E~02 3.205513E+402
62 -18.711029 373.754355 4.999975E~C2 3.7342226E402
64 -18.¢84787 376.567139 5.035145£-02 3.770450E402
86 ~23.507019 469.644C43 %.695026E-02 %.7023198+02
68 ~24.166122 477.837158 5.050343E~02 4.784uTEZH02
70 +31.580559 539.834473 5.825121E-02 5.407527E+02
72 ~26.5-2238 572.176753 4,633 382-02 5.72760CE+00
T4 <27.676541 807.917705 4.5%3934E-02 5.C554THES02
THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS
2 ~1.1766090 23.5027618
4 ~6.8957300 137.739544
6 ~6.8707829 137.243713
8 ~7.3588877 146.597519
16 -14.9596615 298.818348
12 -15.2212658 304, 044189
14 -15.53410264 310.315674
16 ~18.6623230 372.7795%1
18 -27.16470662 542.287109
20 -29.1354675 552.672607
22 -30.3554840 606320557
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CHAPTER 4

SUMMARY AND SUGGESTIONS FOR
FUTURE WORK

The contribution of this research is a candidate reduced-order
control architecture for application to lightly damped, flexible space-
craft. The resulting controller is attractive in terms of dimension,
performance, and stability, but there are areas where further investiga-
tion is necessary. The intent of this chapter is to highlight key
points in the theoretical development of the candidate architecture, and

to indicate assumptions, limitations, and areas of concern.

The plant of interest is specifically a distributed stiffness,
distributed mass, flexible, lightly damped spaceborne structure with
six rigid-body degrees of freedom. The deformations of the structure
are assumed to be small and elastic. Within these constraints linear
theory applies, and the system response can be described by a separable
partial differential equation (PDE) in space and time. If modal co-
ordinates are used, and a third assumption, "modal damping", is made,

then the solution to the PDE is

qly,tl = Z¢iai (50a)

where

- 2 1
g, + Zcimiﬁi + wiii = o f¢i * Fly,t) dy (50b)
S
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I T

2
mi = fd).lp dy (50¢)
S

Fly,t] is the force input to the system and can be selected to control

qly.tl.

For purposes of this research, the control design objective is to
regulate pointing and to add damping to those structural modes which
impact system performance. However, before discussing the controller,

several comments are appropriate.

(1) The simple form of Eg. (50) is due to two assumptions:
linear structural theory, and a viscous approximation
for structural damping. These assumptions are basic
to the work of this text, and if they are not valid

the results presented here may not apply.

(2) Equation (50b) is a semiinfinite set of second-order
differential equations which describe the dynamics
of the modal amplitudes. 1In reality, this set will
be truncated; a limitation due to the state-of-the-
art in structural modeling. The truncated descrip-
tion is accurate at low frequencies, but becomes in-

23)

creasingly inaccurate at higher frequencies.

(3) The eigenfrequencies Ai are densely spaced for a
structure, with the potential for multiplicities
of four or greater. In general, there will be no
evident frequency separation between high-~ and low-
frequency eigenvalues. The mode shapes ¢i are

functions of spatial variables only.

(4) The time response of any particular modal coordinate
Ei depends on the spatial and temporal characteristics
of Fly,t). The spatial characteristics govern the

amplitude of response through the factor f ¢i « Fly,t] dy.
S
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The temporal characteristics of F determine the actual
response dynamics. If F is periodic in time, then the

Ai response can be described with a Bode plot. 1In this
thesis, point actuators were used— either axial member
actuators, or CMG torques. For this special case, the
spatial characteristics of F are determined by the actuator
locations, and by the way the m controls are coupled

together.

m
f¢i * Fly,t) dy = E ¢, Ly, u Lt
S k=1

where
m = the number of actuators.

If the control law ult] is chosen to be a feedback signal (for
all the advantages that feedback gives), then two bodies of control

theory are available: classical and optimal.

Classical theory is based in the frequency domain and presents
the designer with a set of powerful scalar tools to shape the frequency
characteristics of input/output paths. Given a modal description of
a system, the designer may phase-stabilize, gain-stabilize, notch-filter,
cross feed inputs and outputs, or put dynamic compensation in the for-
ward or feedback paths. The flexibility allowed by classical theory
is both a strength and a source of criticism. Classical designs are
nonunique and depend heavily on the experience and capability of the

designer.

In contrast to classical techniques, optimal theory provides a
feedback design which is fixed in configuratiom—a cascade of regulator

gains and an optimal estimator. The gains of the regulator and the
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dynamics of the estimator can be uniquely selected to minimize a weighted

cost function of mean-square input and mean-square state deviations.

Knowledge of the system eigenspectrum is not needed in the design.

Both approaches (classical and optimal) have their strengths, but
in the spacecraft context neither is adequate. Classical theory is not
tractable for systems with large numbers of inputs and outputs. Optimal
theory can handle the multiple-input/multiple-output problem, but re-
quires that the dimension of the controller match the dimension of the

plant. This is clearly not feasible.

The control design approach which is developed in this thesis
borrows classical ideas: Chapter 1 discusses categorizing modes with
the intent of treating them differently in the design process and
Appendix A develops input/output transform theory, which is a linear-
algebraic extension of crossfeed. These ideas are blended with a
reduced-order optimal regulator estimator to make up the candidate
a;chitecture discussed in detail in Chapter 1. The philosophy is
to use the regqgulator within the bandwidth, to use the input and output
transforms to decouple x

and x., states, and to use a singular pertur-

2
bation correction to account foi the high-frequency X, states.

From a fundamental point of view, categorizing modes and using
different techniques to account for them allows the designer to use in-
formation he might otherwise discard. Transforms, for instance, exploit
spatial information. The advantages of this control design approach are
illustrated in Chapter 3. Reduced-order designs are exhibited, which have
near optimal performance and which are stable when tested against an evalu-

ation model.

There are areas of concern, however. One serious issue that must

be faced is that of the design sensitivity to parameter variations
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(robustness). Ideally, a reduced-order controller should be insensitive
to both the order reduction scheme and to the parameter changes within
the retained model. This area has not been completely explored in this

research. Two points can be made, however.

(1) At high freguencies, eigenvectors are less sensitive to
parameter variations than their corresponding eigenvalues

(see Appendix G).

(2) Small changes in a transform correspond to small changes
in zero locations. Recall that a transform will place
zeros on top of poles of suppressed modes. If the trans-
form is perturbed, these zeros move smoothly in the fre-

quency plane (see Appendix A, F-8 example).

The insensitivity of spatial information and the smoothness of zero
movement are indications that using transforms may be a robust-order

reduction scheme.

A second concern is the effect of measurement noise. Designs
in this thesis are deterministic and output transforms look attractive.
If measurements were noisy, an alternate set of conclusions may be
reached. The concern is not that ¥ will have dramatically different

noise characteristics than y, but that the covariance of an [Al' T3C1]
observer will be larger than the covariance of a [A, C] design,

Future work is certainly needed in the two areas just discussed.
In addition, there are two other areas that may prove interesting.
Appendix A indicates that transform capabilities are enhanced if trans-
forms are given memory. This extension parallels the classical idea of
a crossfeed filter. Then, Appendix C discusses making an adaptive
transform. An algorithm is presented, and it is illustrated that when
system outputs are run through a fast-Fourier transform (FFT), and the
results are arrayed spatially, that mode-shape information can be con-

structed. This is a potentially powerful idea. An issue which remains

is the impact of noise on the Fourier coefficient values.
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CHAPTER 5

CONCLUSIONS

A new controller design methodology for application to flexible

structures has been developed. This investigation shows that the spa-

tial shaping of system inputs can effectively reduce the excitation of

a defined subset of modes. When the subset is chosen to create a fre-

quency separation between controlled and residual modes, a reduced order

regulator can be used to control the performance-related modes. A dc

correction term in the regulator measurement equation will adequately

prevent the residual modes from causing instability.

The reduced order design methodology has been applied to two

plants: the F-8 aircraft and the Draper Laboratory M2V2 space

optical
satellite design.

For the ¥-8, spatial shaping of the control reproduces

the rudder coordination crossfeed gains of a classical design. For the

M2V2 satellite, a 22~state reduced order regqulator is shown to have

essentially the same quadratic cost as an 88-state, full-state
regulator.

feedback
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APPENDIX A

TRANSFORM METHODOLOGY

Input and output transformations are integral to the control

architecture which is developed in this thesis. They are used to shape
the input and feedback control signals so tﬁat control authority is de-
livered only to the system modes of interest. The need to focus the
control effort in this way is indicated earlier in the text; the inter-
est here is in a detailed description of the transform methodology in

terms of linear algebra, frequency domain, and crossfeed control ideas.

a.l Concept Motivation

For discussions in this appendix, the finite dimensional system

ZO' described by
I3 7
= IR | EST I
ZO: = + u (A-1)
% 0 22J[*2 B,
r
=1
X = [Cl cz] N
| =2

will be used. The block diagram description is given in Figure A-1l.

The following definitions hold.
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X = the vector of state variables that describes the modes

which have unacceptable dynamics or which are excited

by external disturbances. These modes are to be con-

trolled.

X = the vector of state variables that describes the modes

which have acceptable open-loop dynamic characteristics.

Equation (A-1) is in the block diagonal canonical form described in

Appendix E. In this form, there is no dynamic coupling between modes;

the coupling is solely in the input distribution and output matrices.

The intent is to provide a reduced-order feedback controller for

ZO; specifically, a controller based on the dynamic description of the

¥, states. The control law to be applied has the form

1

e
&>

A X+ B

§X>e
|

1

where K and G are gain matrices. Using this

loop dynamics are given by

X, A, 0 + B,K
X, = o A, + BK
4 6, ©c, A +BK

Introducing the variable

1)
L
I%>
]
»
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control

(a-2)

(a=3)

law, the closed-

L3

X (a-4)

(A-5)



. (14)
There are special cases, investigated by Balas, when a control

law based on only [All' B, C]] will be adequate. He defines the guantity
B.K x as "control spillover"; the quantity GC2>_<2 as "observation spilli-

2
over”, and proves the following results.

(1) If GC2 = 0 and BZK = 0, the case of no observation or
control spillover, then X, and e will be uncoupled from
§1 and a controller based on [All' Bl' C1] will be ade-

quate. Because G and K will in general be nonzero, the
zero spillover condition typically occurs only when

C,=0and B_, = 0.

2 2
(2) If GC2 = 0 and BZK # 0, the case of only control spillover,
the x  states will be excited by the controller, but the

2
system will be stable if [A11 ~ lel' A

are all stable.

227 and [All - GCl]

(3) If Gc, # 0 and B_K = 0, the case of only observation

2

spillover, the time response of the 51 states may be slower

than ideal (case a), but the system will again be stable
if [A11 - BlK], and [A11 - GCl] are all stable.

The control methodology presented in this thesis was motivated origin-

ally by Balas' discussion.(l4) The transforms T_ and T_ (see Fig-

2 3
ure A-2) were introduced to minimize the control and observation spili-
over. The objective is to choose T2 such that

BlT2 # 0, BZTZ

|
o

(A7)

and T3 such that

[}
o
.

T.C. # 0, T C2 (A-8)

371 3

If these conditions are met, then [All, B T2, T3C] will be con-

1
trollable and observable, and there will be no control or observation
spillover from the controller.

126



In addition to the transforms in the feedback loop, the methodo-
logy allows a transform on the commanded input. The purpose of this

transform is to shape the command to avoid exciting the X, states.

This appendix discusses the solution of Eq. (A-7) and (A-8), and
comments on the existence of solutions. In addition, the state space
and frequency-domain interpretations of the transform cohcept are devel-
oped and related to classical crossfeed design concepts. Finally, the

use of dynamic transforms is discussed and applied to a design example.
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A.2 State Space Formulation

A controller configuration which provides authority to specified
states, and at the same time eliminates spillover, is clearly of inter~
est. Equations {(A-7) and (A-8) offer one specification for such a con-
figuration. Alternatively, referring to Figure A-2, one can loock at
three signal paths: r to x, E to x, and u to i. In each of these paths,
the transform, Tl' Tz, or T3 can be chosen to exclude information about
specified modes. The condition of zero observation spillover corre-~
sponds to a §'which contains information only about the X states. Simi-
larly, for zero control spillover from either the system input r, or
the feedback control u, the output of the r to x, and the E to x signal
paths must contain only Xy information. This alternate specification

will be used in the following discussions.

A.2.1 Transformation Selection

In this section the actual choice of the required transforms will
be addressed. The same methodology applies to the selection of all three

transforms; the discussions here will focus first on the choice of T2.

Then, the results will be generalized to also include ’I‘1 and T3. Note

that T2 and T3 can be chosen independently, but, because Tl operates

on the closed-loop system, it may be coupled to the choice of T2 and T3.
The following result applies specifically to the u to x signal

path.

Theorem 1:

Given a system 20, with ;_ceRn and geRm

I

1

1%
[}
11
+
o]
[

(a-9)

<
"
)
¥



+
r{t) + u | A1 X
—y T1 !
+
. c
+ X5
B, f
y
R Y
Ty A T3
g y

CONTROLLER =

Figure A-2. Block diagram description: input/output transforms.

where Eq. (A-9) is in the block diagonal form given in Appendix E, a
control can be constructed which does not excite r primary states where

r=m-1.

Discussion:

Assume Eq. (A-9) is in a block diagonal representation of 20,

and introduce as before the notation that x. represents the states to

1
be controlled, and _:52 represents the states to be suppressed. The sys-

tem I 0 can then be represented as

= + u (A-10)

where u = T u (see Figure A-3).
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t:.
-
N

+ X
=1
B
1
{ S
u Ay X
|
+ X2
B, ‘ f
+
X4
A2 dim =n
X2
, dim [)52] =r
dim [ul = m

Figure A-3. E to x signal path.

To suppress 52, a singular transformation T2 must be chosen such

that

Depending on the dimensions r and m, a solution to Eq.

may not exist.

(1)

(2)

Ve A ——— -

275 (A-11)

(A-11)

(see Bryson and Ho(24) Appendix A.)

If r < m, at least one T2 exists although its form may
not be unigue.

If r > m, the condition Bsz = 0 can only be met by T

in which case BlT2 = 0 also.

2 =0
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From a geometric viewpoint, the rows of 82 and the columns of T2

. . r r . )
are contained in the space R, If r < m, R will in general be com-

pletely specified by BZ' and no nonzero vectors, V, will exist in R"

for which Bz * V=20. On the other hand, if r > m, the rows of 82 will
only span a subspace of Rr, and the columns of T2 can be chosen in the
null space of B2. The dimension of the null space must be at least one

for Eq. (A-11) to be satisfied.

The focus of the theorem is on maximizing the suppressed subspace,
given a system dimension and a control dimension. This approach results
in a T2 which is an [r x 1] matrix, and in a scalar control u. Alter-

natively, if r and n are specified, then T2 can be chosen to be a matrix
of dimension mx{m - r], and E will have dimension [m - r] x 1. In this
case, the columns of T2 are again chosen to span the null space of 82.

Note though, that unless r = 0, T_ will be a singular transformation.

2

A.2.2 Dynamic Transforms

Theorem 1 establishes that for the system of interest, described
in Eq. (A-9), a control can be constructed which does not excite r pri-
mary states where r = m - 1. If there is a requirement to suppress
more modes than this, two options exist: the dimension of the control
vector can be increased by adding actuators, or dynamics can be intro-
duced into the input distribution network. The following theorem ap-

plies.

Theorem 2

Given the system Zo, with geRn and geRm, and described by Eq. (A-9),

a control can be constructed which does not excite r primary states where
r = p+m-1

where p is the order of the dynamics.
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Discussion:

As indicated in Appendix B, if the jth input to a multiple-input/
multiple-output system is filtered by a first-order filter, two effects
occur: the filter dynamics must be added in parallel with the plant

dynamics, and the input distribution vector associated with the jth in-

+ . . . .
n 1.- If 20 is driven only by the Jth input, and the

input is filtered through a first~order lag with characteristics

put is rotated in R

[af, bf, cf], then Eq. (A-10) can be rewritten

X By % 15
] N

% > % B2y | Yy
¢ 2¢ 1L *¢ be

Expressions for Eij and Eéj are available from the results of Appen-

dix B. The key point here, however, is that in Rn, the vector

3

-

3¢

is linearly independent from Ej' Using system linearity, and the

above result, it is possible to augment the input matrix of EO with p
additional columns, where p is the number of parallel input filters that

are used. For example, for the two-input system

1%
>
o

E3

| e
]
O
>
%
+

2 u (A-12)
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shown in Figure A-4, introducing dynamics into the input distribution

network gives the augmented system

% SO | B B
52 = 0 A2 0 X, +
X o]
5f 0 Af xf 0
where
r -
Afl
Ae = P
- .'-:
bfl
Beg = ey
- .'-
and
E11 212
El .b.z E = o
by 2,2

Note that the conditions

1
[Bll E12 21' TZ *

=21 —22 =2 2

(A-13)

(A-14)

can be met if r < p + 1. As discussed, T2 is chosen in the null space

of by By, Byl
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u"-——-‘ —-—..X,

U2 ————— X3

TWO-INPUT SYSTEM

U1 - X1

ot

Figure A-4. Two-input system with filtered inputs.

The geometric concepts which motivate the use of transform
dynamics are relatively straightforward. The actual choice of filter
eigenvalues is more involved. The filters must be chosen to give input
distribution vectors which are linearly independent. In addition, the
filter dynamics should be significantly faster than the dynamics of the
X, states. If these conditions are met, Eg. (A-11) can be satisfied

and the x_ states suppressed.

2
It should be stressed that for the multiple~input/multiple-output
case, the methodology outlined above will not yield a unique nor an
optimal design. Concerns which certainly would arise in any general
implementation include how to partition the dynamics among the cross-
feeds, and what values for the dynamics eigenvalues are really optimal

in some sense.
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A.2.3 Generalization

Sections A.2.1 and A.2.2 focus primarily on the u to x signal path,

and on the selection of T2. The extension to the u tolg signal path is

straightforward. The rows of T4 are chosen to be in the column null space

of CZ' If the dimension of the output is £, then g primary states can be

suppressed in the output where g = £ - 1. If dynamics are included in
the output transform, then the appropriate condition isgq =8 + p - 1,
where p is the order of the dynamics. These results parallel the input

distribution results exactly.

The choice of Tl is similar to the choice of T2 in methodology.

The difference is that Tl should be based on closed-loop-system input

distribution characteristics. The procedure recommended is to choose

T2 and T3 to avoid spillover, to choose G and K based on [All' Bsz,

T3C1], and then block diagonalize the closed-loop system. This will
. (oti

result in a description [ACL' BCL'

canonical form used throughout this appendix. If the columns of B

CCL] that is in the block diagonal

CL
which correspond to the 52 states are identified, and designated BCL p
then the rows of T, can be chosen in the null space of B . This 2

1 CL

procedure will shape the command input so that §2 is not e%cited.

A.3 Frequency Domain Interpretation

The system descriptions used thus far in this appendix, speci-
fically Eq. (A-1), (A-4), and (A-6), are state space descriptions in
the time domain. Additional insights are evident if ZO is described
in the frequency domain, and the implications of the choices of Tl’
T2, and T3 are discussed in terms of the effect on pole and zero loca-
tions.

Classical control theory, as originally derived, uses scalar func-
tions of complex frequency to describe system response characteristics.
The scalar formulation is natural for single-input/single-output plants,
but becomes cumbersome for multiple~input/multiple-output systems. The

theory has been reformulated in terms of vector functions of frequency,
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and is available in the literature. The vector formulation is appro-
priate for describing MIMO systems, although generalized definitions of
scalar concepts are required. Appendix D reviews the vector theory in
detail. Of specific interest here are the generalized descriptions of
poles and zeros, and the theorems which discuss the conditions under

which these quantities are invariant.

A.3.1 System Description

The system under discussion, ZO, is described in the time domain

by Eq. (A-1), which is repeated here for convenience.

3] SRR I F-3Y By
: = + u A-1
Iy u (A-1)
X, o Ayl B,
%
- c
¥ [c, ¢,l
%

The poles of ZO are given by the eigenvalues of ;

specifically the poles are the set Ai, i =1 to n, where
[kil -A) = O (A-15)

Because Eg. (A-1) is in block diagonal form, the solutions of Eq. (A-15)

are available by inspection.

The zeros of ZO can be determined from the Rosenbrock Matrix

P[s]
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Pis] = (A~16)

The actual determination is computationally involved, particularly if
multiplicity of zeros occurs. KontakOS(ZS) has developed a method which
derives the complete set of zeros from the minors of Pl{s]. The subject
is discussed further in Appendix D. Note, though, that while determin-
ing the entire set of zeros can be complicated, certain subsets of zeros

are more readily accessible. Output decoupling zeros occur at those

values of complex frequency s for which P([s] loses column rank. Simi-

larly, input decoupling zeros occur at those values of s for which P[s]

loses row rank.

A.3.2 Transformation Effects

If transformations are introduced into the command, feedback con-
trol, and output paths, the system ZO will have the configuration shown
in Figure A-2. As before, it is convenient to focus attention on the
three signal paths u to y, u to x, and r to x. The discussion below

will evaluate their transmission-blocking characteristics.

The dynamic relationship between u and ; can be described by the

linear system

"
+
le

(A~-17)

L
(o]
-]

k3

w

2 22

y = [T TG
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The Rosenbrock matrix for this system is

sl - All 0 - Bl
Pl[s] = 0 sI - A22 ~ B2 (A-18)
T3C1 ‘1‘3C2 0

1f T3 is chosed to satisfy Eq. (A-9) specifically

'1'3c1 # 0 T3C2 = 0 (a-9)

then, the transfer matrix between u andlg'will be characterized by poles

at values of s equal to the eigenvalues of All and A22,

values of 5 equal to eigenvalues of A22. Note that choosing T3 to avoid

and zeros at
observation spillover, will, in effect, place output decoupling zeros

at the same locations in the complex plane as the poles of the modes

which are to be suppressed in the output.

The relationship between E and x can be described by the system

= + u (A-19)

The corresponding Rosenbrock matrix is

sI - Al1 0 - B1T2
0 sI - A -B_.T
p sl = 22 22 (A-20)
I 0 0
[ o I o |
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If T_ is chosen to null control spillover, specifically to satisfy

Bsz # 0 BZTZ = 0 (A-8)

then, P_[s] will lose row rank at values of s equal to the eigenvalues

2
of [A22]. This indicates that the u to x transfer matrix will have
input decoupling zeros on top of the X, poles, and therefore will pass

only X information.

The analysis of the effect of T1 on the transmission-blocking

properties of the x[t] to x path is more complex because T, depends on

1

T2I T3, K, and G.

For the special case where ’I‘2 and T3 are chosen to satisfy Eq.
(A-8) and (A~9) and the feedback loop is closed, then the dynamic

response of x to r[t] is given by:

X Bjp T BTk O - BjTK % 5,7
x| = 0 A, 0 x, |+ 8,1, r(t) (A-21)
é 0 o a, -ore Jle 0

The poles of this system are given by the eigenvalues of [A11 - BlTZK],
[A22], and [All - GC1]° The Rosenbrock matrix is

51 - - - - B_T.
sI -~ A, - B.TX 0 B,T,K R
0 sI - A, 0 - BT,
o - 0 0 ST - A, + GI,C) 0
38 =
1 0 0 0
0 1 0 0
L 0 0 1 0o
(a-22)
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In this instance, the choice of Tl to satisfy

B.T # 0 , BT = 0 (A-23)

will place input decoupling zeros at values of s given by the poles of
[322] and the path r[t] to x will not pass X, information. However, in
the more general case, where T2 and T3 do not satisfy Eq. (A-8) and (A-9)

exactly, Egq. (A-21) becomes

X A, +BTX 0 + BT K 3 BT,
%0 = + B,T K A, + B,T K x, 1 +]B,T | x(t)
e 0 GT3C2 All - GT3Cl e 0
(A-24)
and Eq. (A-22) becomes
sI - All - BlTZK 0 - B1T2K - BlTl
- B2T2K sI - A22 - B2T2K - Ble
0 - GT3C2 sI - A, + (;'1'3c1 0
P is] =
I Q 0 0
o] I o] 0
L Q Q I 0 h
(A-25)

In general, satisfying Eq. (A-23) will not cause P3[s] to lose
row rank. Instead, Eq. (A-24) must be block diagonalized. Then, as

discussed in Section 2.3, some number of the closed-loop modes can be
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suppressed by choosing the columns of T1 in the null space of the rows
of the closed-loop input-distribution matrix. This choice of T1 will
again place input decoupling zeros at the same locations in the complex

plane as the poles of the suppressed modes.

The discussion so far has assumed a state-space description,

Eq. (A-1), and focused on the characteristics of specific signal paths.
The description that is chosen uses modal coordinates as state variables.
This choice is convenient because it allows an easy identification of the
states which correspond to any particular mode; but it is not unigque.

A possible concern involves the potential changes in the poles and zeros
of the signal paths with changes in state variable choice. Theorems

are given in Appendix D, which establish the invariance of poles and

zeros under state transformations.

A.4 Correspondance to Classical Crossfeed

The design objectives, as motivated earlier in the text, are to
produce a feedback controller with specified authority, which does not

excite the suppressed xX_ states, and, in addition, to shape the command

2
input so that again, only the modes of interest respond. Transforma-
tions Tl' TZ' and T3 have been introduced into the control configuration
specifically to meet these objectives. Appropriate transformations
exist within some constraints, as detailed earlier, but these trans-
formations will in general be singular. In effect, the inputs of a
multiple-input/multiple-output system are coupled into specific linear
combinations. The structure of each combination is chosen so that the
x, states will not be excited. 1In general, the number of appropriate
linear combinations is fewer than the number of system inputs. Simi-
larly, the system outputs are combined linearly to form observation

residuals which do not contain suppressed mode information.

The idea of coupling inputs to avoid exciting a mode, or the idea

of blending outputs to produce a feedback signal which excludes certain
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states, 1s not new. The classical concept of crossfeed in the input

or output has been used extensively. Two representative exar '~s are:

(1) Rudder Crossfeed.

Figure A-5 describes the F-8 lateral dynamics control

system.(zs)

Note the crossfeeds in the command, feed-
back control, and output feedback paths. Crossfeed
between aileron and rudder is provided to prevent a roll
command from exciting the clutch roll mode. Note, also,

the presence of dynamics in the crossfeed.

(2) Missile Pitch Control

Figure A-6 describes the pitch control loop for a

missile.(27)

In the design shown, pitch rate output from
two locations are blended to suppress the first bending
mode information in the feedback signal.

The examples above are given to illustrate that the transform
concept, discussed originally in terms of spillover reduction, is just

a matrix extension of established design techniques.

A.5 Spatial Filtering

It is worth discussing the actual mechanism which is being ex-
ploited in the crossfeed or transform selection. Appendix E derives the
system equations of motion and contends that flexible systems are best
described by a partial differential equation in space and time. This
equation is separable, which uncouples the spatial and temporal descrip-
tions. when a designer controls the spectral content of a signal by
using a filter, say a notch filter, he is operating on the temporal char-
acteristics. By contrast, the use of crossfeed operates in the spatial
domain; shaping the signal in space. For the systems which are of in-
terest in this report, temporal and spatial methods represent indepen-

dent uses of the available information.
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A.6 Summary

This appendix applies specifically to the linear dynamic system
Zo described by Egq. (A-1) and shown in Figure A-1l. A methodology is de-
veloped which provides a reduced-order controller for Zo. This control-

ler is structured to meet two specific constraints.

(1) It provides feedback control for a specified subset of

the system states.

(2) It is decoupled from the remaining states.

Transformations on the system input and output are introduced, as
illustrated in Figure A-2. The decoupling mentioned above is achieved

by enforcing the conditions

BT, # 0 , BJI, =0
BT, # 0 , BT, =0
T,C, # 0, TC, = 0 (a-26)

If solutions to Eq. (A-26) are available (the specific existance condi-
tions are presented in Section A.2.1), then the appropriate reduced-order

controller will only depend on [All' B.T., T3Cl]. This is the key re-

172

sult. Some additional comments are offered to provide insight into the

various implications of the use of input/output transforms.

(1) Structural response can be described by a separable

partial differential equation in space and time. In con-
trast to many control system filters, the transforms used
here operate in the spatial domain. 1In effect, decoupling

is achieved by a spatial shaping of the input and output.

(2) Picking Tl' T2, and T3 to satisfy Eq. (R-26) is equivalent

to
(a) Choosing T1

and T2 in the row null space of 82 and

choosing T_ in the column null space of C2.

3
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(b) Specifying that the zeros of the r{t] to %, u to x,

and u to y, cancel the poles which correspond to x

__2'
. (14) .
(c) In Balas' terminology, nulling control and ob-
servation spillover.
(3) The transform concept is a vector extension of classical
crossfeed techniques.
(4) If the dimension of the system input and output are speci;

fied, there are simple limits on the number of 52 states

from which the controller can be decoupled.

If dynamics

are used in the crossfeeds, which in effect makes the

transforms specified functions of time, then the number

of decoupled states can be expanded in direct proportion

to the order of the dynamics.

An example—the design of an aircraft iudder coordination

system—is included at this point to illustrate the transform concept

and methodology.

A7 Design Example

This design example is intended to illustrate the major points

which are detailed earlier in this appendix. The aircraft was chosen

as an appropriate plant for three reasons.
(1) It is of relatively low order.
(2) It is a multiple-input system.
(3) Classical design analyses are available to use

An actual aircraft flight controller can be quite complex;

as a comparison.

the discussion

here will be limited to the design of a rudder coordination system. This

system is of particular interest because the rudder coordination crossfeed

has traditionally been used to prevent a roll command from exciting

oscillatory modes.
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A.7.1 Aircraft Description

The lateral dynamic response of an F-8 to aileron and rudder inputs
is given by Eq. (A-27). This equation is written in body axes and is
valid for small perturbations from straight and level flight. The body
axis frame has its x axis inclined to the trimmed velocity vector by the
anglea.o = 7.75°. The nominal flight conditions are altitude = 20,000 feet,
and Mach = 0.56. The state variables are sideslip, 8, roll angle ¢, which
are taken about the aircraft x axis, body axis roll rate, wx, and body axis

yaw rate wz.

Aircraft
F-8
At Mach = 0.56, 6706 m altitude
= 7.75°
%o

Lateral Equations

= + B -27
X Ac)_(_c r\-T- (A )
where
~ —
b
@» )
x = x a
-c u =
u)z $
r
B
L - _
0 1.0 0.1361 0
A - 0 -2.625 1.91 -29.8
c
Q -0.0759 -0.426 2.65
0.0555 0.1359 -0.9974 -0.217%J
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-
0 0
B = b b = 27.0 6.13
c —ar
1.42 -3.55
0.002315 0.0422
- .

Eigenvalues

-1.982¢

-2.856 x 1072

-6.2855 x 107 + 2.35 ;

Alrcraft lateral dynamics are characterized by three response modes:

(1) The role subsidence mode governs the aircraft response to a
pure roll input.

(2) The spiral divergence mode is a very slow, often unstable
mode. If it is unstable the resulting motion is a combination
of increasing yaw angle and increasing roll angle, and
finally a high~speed spiral dive.

(3)

The dutch-rcll mode 1s an oscillatory mode, in sideslip,

yaw, and roll which is lightly damped.
Aileron and rudder inputs each excite all these modes. The pole
zero plots of the significant input-output transfer functions are shown:

alileron-to-roll angle (see Figure A-5), aileron-to-roll rate

(see Figure
A-6), and rudder to sideslip

(see Figure A-7). Note that in the aileron

transfer functicons (see Figure A-8), a pair of complex zeros nearly can-

cels the oscillatory poles, while in the rudder transfer functions there

1s no cancellation, and the residues associated with the dutch-roll mode

zan be expected to be large.
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Figure A-7. Pole/zero locaticons—aileron to roll angle.
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Pole/zero locations—rudder to wz.
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A.7.2 Controller Configuration

The lateral controller presented in this section achieves two

objectives.

(1) It adds damping to the dutch-roll mode to improve the air-

craft disturbance response.

(2) It couples the rudder to the aileron through a dynamic
crossfeed to prevent the dutch roll mode from appearing
in the response to a roll command.

(26

The baseline controller was designed by Whitaker, ) and is shown
in Figure A-~1l. Yaw rate feedback, Sw , is used to add the required oscil-
z

latory mode damping. The crossfeed gain S e’ and the crossfeed-filter time

C

constant, TCF, are chosen to place the complex zeros of the aileron-to-roll

angle transfer function at the same location in the complex plane as the
poles of the dutch-roll mode. Figure A-12, shows the design parameters,

Swz' and T in the structure of a state space description. A key

Scr cF’
point that is evident here is that changes in SUle will change the system
A matrix, and therefore can be expected to influence both pole and zero

locations. By contrast changes in S will change only the B matrix, and

CF
hence should only affect zero locations.

The influence of Swz, S on the closed loop system char-

T
cpr 374 Top

26
acteristics will be presented two ways. First, the results from Whitaker( )

will be duplicated; then, an alternate design based on transform techniques,

will be presented. The two methods produce identical results.

A.7.3 Classical Design Analysis

The analysis presented here duplicates the results obtained by

Whitaker.(26) The influences of Swz, S .., and 1 are investigated

CF CF
parametrically, and presented in terms of changes to the poles and zeros
of the aileron-to-roll angle transfer function. Recall that the two

objectives of the design are to add damping to the dutch roll, and
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then to specifically suppress the effect of this mode in the roll response
to an aileron input. In the complex plane, these objectives correspond to
moving the aircraft oscillatory poles to the left, and then cancelling

them with complex zeros, Figures A-13 to A-20 summarize the key parametric

results. Specific effects that should be noted include the following.

(1) The effect of crossfeed with no yaw feedback and no crossfeed

filter (see Figures A~13 and A-14). The crossfeed gain, SCF'
affects only the B matrix, and therefore the system poles stay
at their open-loop locations. The zeros do move, and cross-
feed can be chosen to put the complex zeros close to, but

not on top of, the oscillatory modes.

(2) The effect of yaw feedback to the rudder with no crossfeed
(see Figures A-15 and A-16). Yaw feedback causes both the
zeros and the poles to migrate. Increasing the feedback gain
adds damping to the oscillatory mode, but also increases the
separation between the dutch-roll poles and the complex zeros.
The increase in separation increases the residue associated

with this mode, and adversely affects the roll angle response.

(3) The effect of crossfeed with the yaw damper loop closed (see
Figures A-17 and A-18). The yaw damper gain is chosen to give
adequate damping; then rudder crossfeed is added. The tra-
jectory of the complex zeros misses the pole location by a

wide margin.

(4) The effect of crossfeed dynamics with the yaw damper loop
closed (see Figures A-19 and A-20). This case is identical

to the case just discussed, except that a lag filter, T = 0.25,

CF
is added to the crossfeed. Note that a crossfeed gain can now
be selected so that the complex zeros nearly cancel the damped

dutch-roll poles.
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STATE SPACE EQUATIONS 5, - :
® CROSSFEED GAIN n — @
6R P ﬁ
e NO CROSSFEED FILTER
e NO YAW FEEDBACK
®S.. =030609
[ 7
0 0
0 0
AIRCRAFT: A b,
) 0
0 0
= x
== =7 —"
0 | -10 | |
| -250 | -25.0 |
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L :1#CF
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(A-29)

VARIATION: NO CHANGE IN A: SAME POLES, ZEROS CHANGE

Figure A-13, Effect of crossfeed with no yaw feedback and no
crossfeed filter—state space equations.
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Figure A-14,.

Aileron to roll—zero location change with crossfeed.
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® NO CROSSFEED
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X
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Figure A-15.

gffect of yaw feedback to the rudder with no
crossfeed—state space equations.
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L 1 1

S N N I U T N S |

1 1

-25 -20 -1.5 -1.0 -0.5 0
 REAL
/
/
Figure A-16. Aileron to roll angle pole—zero location cha%ge

with yaw damper gain.
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® NO CROSSFEED FILTER

STATE SPACE EQUATIONS ® YAWDAMPER GAIN = 0.45
5 P ¢
a — wx

® CROSSFEED
WITH YAW DAMPER

4:(1)2
bR L{-—*ﬁ

F 7
AIRCRAFT A, b,
X
""" l-"—-'"
j 045 | I 210 [
CT T == —F===a
L1125 4 | -260 | -250 !
Cee—d [ R NP
L T
1 =
L__ I
b
+ u (a-31)
PP
Sce X 1.0 ; 1.0
- —— [ ——~
SceX 25|, 250
———-
" ! i

VARIATION: NO CHANGE IN A: SAME POLES, ZEROS CHANGE

Figure A-17. Effect of crossfeed with yaw damper
loop closed—state space equations.
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® YAW DAMPER GAIN = 0.45
@ NO CROSSFEED FILTER _
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Figure A-18. Aileron to roll angle—zero location change with
crossfeed gain.
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STATE SPACE EQUATIONS

® CROSSFEED
WITH YAW DAMPER
CROSSFEED FILTER

1%

® CROSSFEED FILTER 7o =
® YAW DAMPER GAIN = 0.45

a — wx
wZ
oR 8
AIRCRAFT: A_ b,
x
— —_—— ]
r | | |
| 045 | | -10 1.0
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Uis o | -25.0 ! -25.0 | 250
—_— [ N BN
b 40
L
r .
=a
+ u (a-32)
| 1.0
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|
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"4 x Ser

VARIATION: NO CHANGE IN A: POLES REMAIN THE SAME, ZEROS CHANGE

Figure A-19.

Effect of crossfeed dynamics with yaw damper

loop closed—state space quatiors.
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® YAW DAMPER GAIN = 0.45

® CROSSFEED FILTER TIME CONSTANT 7~ = 0.25 _1
—1
—
+ i
-
=
—

B N N é}J IS TS [ Y A o | ;%J | i
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Figure A-20.

Aileron to roll angle—zero location change

with crossfeed gain.
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Figure A-21 is a composite map, in the complex plane, of the
migration of the poles and zeros of the aileron-to-roll angle transfer
function with design changes. The parameter values Sw2 = 0.45,

SCF = -0.55, and TCF = 0.25 were selected as design values based on
this analysis. The corresponding poles and zeros are shown in Figure A-21.

The aforementioned trends were obtained from numerical pole zero
analyses of Eq. (A-27), with, of course, the appropriate parameter values.
This is, in effect, a trial-and-error method, which, though adequate for
this example, would become inefficient if multiple crossfeeds, or multiple
filters were required. Alternatively, once the yaw damper gain is selected,
the system equations could be recast in root locus form, with the crossfeed
gain as the parameter [26]. The resulting locus of zero locations would
be identical to Figure A-21. This formulation is particularly nice because
the crossfeed filter can then be desigﬁed, using standard root locus com-
pensation techniques, to make the locus pass through the dutch-roll pole
locations. This technique gives the crossfeed parameter values SCF = -0.55
and Top = 0.263. Again, however, if multiple crossfeeds, or multiple pole
cancellations are required, this method becomes cumbersome-

It is interesting at this point to look at the closed-loop state
space equations. If the appropriate parameter and gain values are sub-
stituted into Eg. (A-28), the numerical state space description is given
by Eq. (A-33) in Figure A-22. This form can be block diagonalized [see
appendix E] which results in the Eq. (A-34) in Figure A-23. The closed-
loop system eigenvalues are evident along the diagonal. In addaition, note

that the aileron input to the oscillatory dutch-roll mode is almost nulled.

A.7.4 Transform Methodology Analysis

This analysis is presented to illustrate the transformation
methodology. As noted earlier, the parameters of interest in the rudder
coordination design are the yaw damper gain, and the crossfeed gain and

time constant. The focus here will be on the crossfeed design. Sm » the
z
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Figure A-21. Composite map of pole/zero changes—aileron
to roll angle.
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Figure A-22.

STATE SPACE EQUATIONS

CLASS

ICAL DESIGN

YAW DAMPER GAIN = 0.45
CROSSFEED GAIN = -0.55

0 1.0 0.1361

0 -2625 1.91

0 -0.0759 -0.426
0.0555 0.135 -0.997

0 0 0.45
0 0 11.25
0 0 0
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TCF = 025
0 0 0
-2.90 0 6.13 0
0 -3.55 0
-0.217 0 0.0422 0 «
; 0T T7T 0T T0 ]
1.250 1250 250
FT o Ty T A
U SR BRI
' 1
0 1 0
|
27.0 ! 0
142 ! 0
0.002315]) 0 |u (A-33)
0 1.0 |
t— ———————
0 t 2.5
_______ s e o e e
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Numerical state space description—classical design.




STATE SPACE EQUATIONS

CANONICAL FORM

YAW DAMPER GAIN = 0.45
CROSSFEED GAIN = -0.55
TCF = 0.26

23.19 |
1-0.877 1
EEREY)

X L__J,_______j .
X = I -0 025121 X
T T 0

e e e —— — ]
| -1.189 1| 2.182
it Bl
L L2182 | -1189_ |
[ 2904 _—__,'__ T334
-0.25569 L 2.4045
6.3911 | 2.2399
+ -0.69199 i -0.01411 u (A-34)
-2.2 _} 0
T-0.0810 ! 18052
! ! 1.6074
Lome L 1 074 _|

Figure A-23.

Numerical state space descriptiom—canonical form

classical design.
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yaw gain, will be taken as sz = 0.45—the same value used in the earlier
analysis. The crossfeed parameters are to be chosen so that the dutch-
roll mode is suppressed in the system response to an aileron input. The

appropriate system functional block diagram is shown in Figure A-24.

The first step is to put the system state space description in
block diagonal canonical form. This particular form is useful because
the system response modes are not coupled in the A matrix. Equation (A-35)
in Figure A-25 gives the appropriate canonical expression. This equation

is a block diagonalization of Eg. (A-28) with Smz = 0.45, S = 0, and

CF
Tep = o.

The mode of interest is the dutch-roll mode. 1Ideally, the choice
of the crossfeed gain and filter time constant will place zeros directly
on top of the dutch-roll poles in the aileron-to-roll transfer function.
Equivalently, one can view the choice of crossfeed parameters as making

the dutch-roll mode uncontrollable from an aileron input.

In the block-diagonal form, the system modes are dynamically

decoupled and the state vector can be partitioned into

_;5 = (A-36)

where X, describes the aircraft oscillatory mode dynamics. Let

x
o 1
%, i} (a-37)
2
Then, the dutch-roll dynamic description can be written
)'cl -1.189 2.18 x| 0.221 1.805
= + u (A-38)
{c2 -2.18 1.189] | x, 1.590 1.607
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1% 5.
1

Figure A-25.

STATE SPACE EQUATIONS

CANONICAL FORM

s YAW DAMPER
¢ NO CROSSFEED

| 0877 1 ____
'l_—~2:_80 e e
t002518 1 _
| 189 | 2182
L2182 ) -1.189
L -
-1.0545 | 3484
1438 __|__ 24045 |
2.2829 | -2.2399
e ——— ———— u
-0.6998 1 -0.01411
0.221216 _|' 1.8052
1.5904 |  1.6074

1%>

(A-35)

System state space equation — block diagonalization.
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If the identifications

0.221 1.805
b, = b, = , and B, = [_131 b]
1.5%0 1.607

are made, where b. is associated with the aileron input, and 92 with the

1
rudder, then the design objectives can be reduced to finding a transform T

such that
BT = O (A-39)

There is no nonzero T that meets this condition because the rows of B2
span RZ. This is consistent with Figure A-14, where it is evident that
crossfeed alone will not produce the required locus of zero locations.
If no solution to Eq. (A-39) exists, dynamics can be added to the cross-
feed; specifically, since there are two controls, and two states to be

suppressed, the order of the dynamics must be at least 1l; a lag filter.

If a filter is added to the rudder input (see Appendix B), an
additional, linearly independent system input vector is formed. Of
interest here are the elements of this new vector which corresponds to

the dutch-roll mode, designated Qg- With this new input

G SYSTEM

+
SR-______i::l_____,.
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Eg. (A-38) becomes

. 8
- a
X, 1.189 2.18 X
. = + [91 b Ez} 8 (A~-40)
X, -2.18 -1.189) |=x,
§
R

The input vector Bé is a function of <t and 22. If b, is regarded as a

CF 2
vector in R2, then gé is the result of rotating 22 through the angle

-1 -
tan
a + l/-tCF
and changing its magnitude by
1
where
2
Q = o + 82
a = -1.189
g = 2.18

These relations are motivated and developed in Appendix B.

In this example, the vectors El' b2, and b, define the way an

2 2
input is distributed between the states xl and x2, which describe the
dutch~roll mode. Thus, xl and x2 can be taken as phase-plane coordinates,

and in this plane, the state vector rotates at the damped natural fre-

quency, 2.18 radians/second. It is perhaps intuitive that if an input

were filtered then its representation in the phase plane might change,

and the time history of the distribution of energy between states might
be effected. The change in angle and the change in magnitude mentioned
previously are the description of this effect.
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Given Eg. (A~40), a transform T' can be found which is orthogonal
to the two row vectors of [gl, 95, 92]. Tris transform is a vector in
R™, and will couple together the aileron, rudder, and filtered rudder
input. The details of this approach will not be pursued. Instead,
because a direct comparison with Whitaker's design is desirable, a
transform T will be found in R2 which couples together the aileron and

the filtered rudder input. This requires that, for the system

X -1.189 2.18 1 [x 8
1l 1 a
= + [91 _gz} ) (A-41)
x, -2.18 -1.189) Lx - - . 8,
the condition
(b, bjlT = 0 (A-42)

must be met. There are two inputs, so the only solution to Eq. (A-42)

will occur when El and 25 span Rl, that is, they are linearly dependent,
or more simply, parallel.

Note that
0.221
91 = -~ 1.605 L 7.918° (A-43)
1.590
1.805%5
22 = -~ 2.417 L 48.316° (A-44)
1.607

For b, and 25 o be parallel, b, must be rotated through -40.398°, which
implies

tan ! —=B - _40.308° (A-45)
a + l/TCF
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Substituting for a and 8, this results in

TCF = 0.2666
and
0.3713
by = + 2.6952 L 7.9187° (B-46)
2.6696
Equation (A-41) becomes
x -1.189  2.18 |[x 0.2212  0.37137[3
1 1 a
- + (A-47)
" - - 8
x2 2.18 1.189 x2 1.5904 2.6696 r
T is chosen to satisfy
b, BJIT = 0 (A-48)
or
1
T = (A-49)
-0.59575

T is orthogonal to l0.2212 0.3713] and [1.5904 2.6696]; the first
element of T was chosen to be 1 to allow a direct feed through of aileron.

With the crossfeed closed, Eq. (A-47) becomes

x, -1.189 2.18 %, 0
| T 1 JPa (A-50)
X, -2.18 -1.189 )L x, 0
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The corresponding system equations are

_-23.1 ]
-0.8769
-2.80
x = —o.ozsi;
-3.7507
~1.189 2.18
2.18 —1.189.J
i 2.94 34.84 ]
-0.4324 2.409
7.550 -2.239
o0 -0.6913 0.01411 u
2.2315 0
0 1.8052
0 1.6075
. -

1%

(A-51)

Note that the dutch-roll mode is not controllable by an aileron input.

The poles and zeros of Eq.
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Table A-1l.

Poles and zeros of system equation (sheet 1 of 2}.

FROGRAM: POLZERQ
REVNS 2,

* COCRDINATED

INPUT QUAD = S100

TRANSITION
1
2
3
&
5
6
7
8
9
1 0
2 6
3 -3
4 4
5 0.
6 -2
7 0
8 0
9 ¢
INPUT
1
2
3
4
5
6
7 -
8
9

Qoo oOoOUVOLOO

Q OO OMPHMNO

TIME: 11:26:35.9 DATE:
MOD# 00.
AIRPLANE
NX = 9
NU = 2
NY = “
T = .0

MATRIX A

.$50000000D0~02

QOO OOVNTOO

6

.0

.1300000000+00
.550000000D+00
.222000000D0-~02

0
.5000000000+01
.0
.0
.0

MATRIX B

1

0
.70000.0000401
.4200000000+00
.3150000000-03
N
.0
.234253076D+00
.0

.0

2

1.000000000D+00
~2.625000000D+00 1.910000000D+00
-7.550000000D-02 ~4.2600000000-01
1.35%000000D-01 -9.%74000000D-01
0.0

Cooaq

coQuUMDHFOOOO

T OoOOMNMNIHOOOO
Qoo oo0ooo

coNVMTooOoOOoOOO

(=N~ =)

00000000D+00
00000000D+01
503000000+00

00000000+00
0000000D+01

Q0

01/63/80

1

4
1

Qoo

CoOoOO0O0O0OO0OOOO

3
.361000000D0-01

.500000000D0-01

.1250000000+01
.0
)
.0
3
0
Q
0
0
0
0
0
0
0

(80/003)

0.
-2.
2.
-2.

(=X~ -e N

QO OO0 OCOoOO

4
0

900000000D+01
650000000D+00
173000000D-01

'
DOOMNMHOOQO

Qo000

CO0OO0OCOO0OODO

[~

.600000000D+00
.5000000000+01

[= 2~y =]
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Table A-1l. Poles and zeros of system equation (sheet 2 of 2).

' OUTPUT MATRIX C

1 2 3 4
1 1.0000000000+00 0.0 0.0 0.0 0.0
2 0.0 1.0000000Q000+00 0.0 0.0 0.0
3 0.0 0.0 1.000000000D+00 0.0 0.0
L 0.0 0.0 9.0 1.000000000D+00 0.0
6 7 8 9
1 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

TRANSMISSION MATRIX D

1 2
1 0.0 0.0
2 c.0 0.0
3 0.0 0.0
4 0.0 0.0
QUTPUT POLES = P200 COORD AIRPLANE
NP = 9
T= .0
NUMBER REAL IMAG
1 -3.750299E400
2 0.0
3 0.0
4 ~2.421546E-02
5 -8.866659E-01
6 -2.786338E+00
8 ~1.191922E+00 2.151013E+00
9 -2.318723E+01

OUTPUT ZEROS = Y2000101 AILERON TO ROLL

NZ = 7
GAIN = 27.1935
NUMBER REAL IMAG
1 9.0
2 0.0
3 ~7.766402E-01
5 ~1.199915E+00 2.153101E+00
6 -2.369135E+01
7 ~3.6284%8E+00
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APPENDIX B

EFFECT OF FILTERING A CONTROL INPUT

'—'.J P
. ——= =
u —a =
e
e ’—'b

The system (I), m inputs—n states, can be represented in block~-

diagonal form

X = AxXx + Bu (B-1)
where
[~ -
A
A
2
A = A,
i
‘A
L 2 |
a B.
A = Y, or * .
i i 2 o
i i
B = ([b,, b,,...b ]l; b. is a column vector
-1" =2 -n =j
179




If a lag filter of the form S ﬁ is added to the jth input
w

— |
-——'-l e

.
— —

an augmented system description is required.

)'x A p/)[x by byees 0 by ...B

u (B-2)

il
+
!

fo 0 -w xf 0 w 0

Equation (B-2) can be put in block~diagonal form using the transformation

(B~3)

%

£

where

—
1<

v
1. . . , . .
[ l}ls the eigenvector associated with the filter eigen-

frequency Af = -w.
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The inverse of T is

I -V
T—l - —£
0 1
and
[
A b.b_...b b b «e.b
. - Py Do 2a0 2 .
x = %+ 1—2 j=-1 ]‘ J+1 (B-4)
=W 00 0 1 1 0 0
. v
b, = -u %
J 1
B.1 Expression for Vf
V.l. . A
[—f] is an eigenvector of the matrix A
1
_ a b
A = J
0o =-uw
which implies
v v
- £
N (B-5)
1 1
Let
-
(b, . ] [v,
15 v
2
P2j :
by = b and Ve = Vl
ij .
v
b . n
nj
[ %03 ] 7
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Due to the near block-diagonal form of X, a set of uncoupled

equations for the elements of V

£ can be written. If the ith eigenvalue

is real, then

ALV, + b, = —uV, (B-6)
ii ij i
or
—bi.
v, = —L (B-7)
i A, tw
i
Combining Eg. (B-7) with Eg. (B-4) yields the relation
iy W
= ——— b, B-8
ij A, + w ij ( !
i
Recall that the filter on the jth input is of the form . ﬁ . Also,
w
note that there is an apparent singularity at ¢ = —Ai. This singularity

is not real. Equation (B-6) is valid only for cases where Xf is linearly
independent of the other eigenvectors of K; a condition that is not

guaranteed if y = -Ai.

If the ith and [i+l]th eigenvalues are complex conjugates, the

correct express ions are

agVy ¥ BiVir Y Py T muYy
“BiVy Y oiVig YR,y T Vg (B-9)
or
V. = -2 ((a. + wb.. - B.b ]
i Q “%i T WPy ii+l,3
v = -LXBb..+ (a +wb ] (B-10)
i+l Q ‘CiTij 4 T W44,
where
2 2
Q = la, + wl + B
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Then, using Eq. (B-4), the relationship for bij and bi . 1is

+1,3
N ) _ e [,
i3 /Q 0 ij
= = (B-11)
: RL L L) |l
i+l,3 ) /o i+l, ]
The matrix
atw €
Vo %)
£ atw
Q 6
is of the form
cos 8 sin ©
- sin § cos ©

a matrix which rotates a vector through an angle 9. Making appropriate
b, .
1]

s ) . .th |
identifications, the vector , by use of a filter on the j input,

bi+l,j

will have a change in magnitude of [é% - ], and will be rotated through

-1
an angle tan -,
atw

The information available in Eq. (B-5) and (B-1l) can be compactly

presented as

>

. (wI +a] b, (B-12)
=3 =3

"
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B.2

Summary
. .th . .
Filtering the 3t input produces the following results.

(1) The system dynamical matrix is changed only by the addi-

tion of the filter mode. It remains block-diagonal.

(2) Only the input distribution matrix column associated with
the jth control changes. Equations (B~8) and (B-11l), or
Eg. (B-12) describe these changes as a function of filter

break frequency.
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APPENDIX C

ADAPTIVE TRANSFORMS

Cc.1 Introduction

This appendix discusses the adaptive shaping of a system output
to control the modal information content. The discussion focuses on the

output characteristics of the linear, time-invariant, plant ZO,

ZO: g = Ax + Pu 5[0] = 50 (C-1)
= Cx + v
A
where
n m £
X € R, u €ER, YyER
Modal coordinates are used as state variables.
Xm is a vector of white, zero mean, measurement noise.
The state vector x can be partitioned
x = | ! (C-2)
—2
Then Eg. {C-1) becomes
X A 0 X B
£, 1l _ 11 ) R I (C=3)
X 0 Ayl X B,
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L = G F Gy iy

where

q
R
x, €

Two output quantities can be defined

Y, = Clil (C-4)

¥ = C1§2 (C-5)

ZO is shown in block-diagram form in Figure C-1.

An output transformation 'I‘3 can be introduced. T3 is a singular
transformation which operates on the output y to produce a signal Y.

The selection of T3 is discussed in detail in Appendix A. The following

results are of interest here.

(1) 1f £ > g, then a T, exists which excludes all x_ infor-

3 2

mation from y.

(2) T3 satisfies the equations
T3Cl # 0, T3C2 = 0 (C-6)
(3) If T3 exists, and is implemented, it corresponds to

placing the zeros of the u to ; transfer function at

the same complex plane locations as the poles of [A22].

(4) T3 operates on the spatial characteristics of ZO to
separate the 51 and §2 states.
This appendix assumes that L > q, and that a transform T3, has
been implemented. If the system model, Eg. (C-1), corresponds identi-

cally to the true system, then T_ can be chosen to satisfy Eq. (C-6)

3
exactly. However, model errors or system parameter changes may lead to

the condition T3C2 # 0, a condition Balas calls observation spillover.
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The following distinctions are useful at this point.

(1) Subscripts: | ]T implies quantities which accurately
describe the system of interest. [ ]m are mcdel values,

and may be subject to errors.

(2) Transforms:
(a) T3 is a controller quantity which was chosen to
satisfy
0; T = 0 -7
T3[Cl]m # 3[Cz]m (C-7)

T, [C,] # 0 (C-8)

The rows of T, can be designated Y j=1, {-g,

such that
1
= -9
I3 . (C-9)
r,
J
(b) 53 is a transform which, in fact, satisfies the
true conditions
T T = c-10
TB[CIJT # O T3[C2]T 0 (C-10)

The row vectors of 53 are designated ;j' j=1, £-q,

so that

o= | (c-11)
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T3 and 53 are related by

where &TB reflects the error in T3. If the row vectors of aT3 are des-
ignated Ej, j=1, £-q, then Eg. (C-12) can be written as a set of {-g

equations.

r, = r, - E, j = 1,2 -4 (C-13)

Observation spillover has a negative influence on system per-
formance, and an adaptive scheme which minimizes spillover in real time
is of obvious interest, The system implications of spillover are dis-
cussed earlier in the text; the discussion here focuses on estimating
the row vectors Ej, j=1, L-q. 1If [Ej] is known, then T3 can be updated,
and the revised transform, T3, will satisfy Egq. (C-10) as desired. The
actual algorithm is based on geometric arguments in vector space, so
these will be discussed first. Then, the actual adaptive scheme will

be presented, along with an illustrative example.

c.2 Geometric Interpretation of Transform Error
The signal of interest 1is the output of EO:
= + + -1
Y [ dx, + [Cl x, + v (C-14)
h i 1 i i ith
The design model approximates [Cl]T with [Cllm and [C2]T wit
[C2]m. n is assumed to be Gaussian white noise, and is therefore char-

acterized on a per-element basis by a mean and a variance., The dimension

of y is known exactly, 2, as are the dimensions of Xyr D-q, and x50 G-

The work here assumes that £ » g. If this is true the columns
of [C2]m span a subspace of RK. This subspace is designated S, Simi-
larly, the columns of [CZJT will span a subspace t.
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Recall that a transform T .s introduced, which operates on y

>

to produce a signal y. System reguirements dictate that T3 should be

chosen so that y contains only 51 inrormaticn.  In eqguation form
vy o= (¢ X, o+ T -
Y T3LL1]T_1 T3[C2]T§2 * Ty {C-15)

Note that the system requirements will be satisfied if

T3[C2]T = 0 (C-16)

However, in the design process, T3 is picked to satisfy

T,[C,] = 0 (C-17)

If there are no modeling errors, then these two relationships
will be identical. 1If there are modeling errors, then Eg. (C-16) will
not be satisfied exactly by T3. At this point, it is useful to inter-
pret the problem geometrically. As discussed in Appendix A, satisfying
Eg. (C-17) is equivalent to picking the row vectors of T3; i.e., rj,
j=1, {-q, in the nullspace of S. In effect, each r. 1is orthogonal to
all the column vectors of [C2]m' If S and 1 do notjcoincide exactly,
then the £j will have components in T. It 1s these components, in fact,

which imply that

T.1C.] # 0 (C-18)

and if these components were nulled, then the updated T3 would be the
desired transform. This discussion can be summarized in the following

points.
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(1) If T3 is chosen to satisfy Eg. (C-17), and there are

modeling errors, then 'I‘3 will be inaccurate.

(2) If T3 is inaccurate, the inaccuracy will correspond
exactly to the projection of T3 on T.
(3) (2) implies that the error in T3 is contained in the sub-

space 1. This is an important idea.
If the notation introduced in Section C.l is used, then we can

note that T3 is in the null space of T by definition. Since the error

in T3 is in 1 then the relationship

r. .E, = 0 (C-19)

holds for all j. Using Eg. (C-13), this becomes

(r, ~E.) - E. = 0 (C-20)

Geometrically, Eg. (C-20) corresponds to requiring that the rows of the
updated transform to be orthogonal to the estimates of the errors in the

transform rows.

c.3 Adaptive Loop Implementation

The adaptive loop which is presented here is based on the geo-
metric insights discussed in Section C.2. It uses the measured system

output z_and the injitial estimate of T3 to derive the true transform 53.

The true transform satisfies two conditions, which can be written

in terms of the row vectors of 53, namely
r [C 0 =1, ¢ - -21
r][ l]T # Jj q (C )
—' = 0 j = IZ- -22
r][CzlT b 1 q (C-22)

Equation (C-21) implies that the dot product of ;j and any column of

(C.).. is nut zero, while Eg. (C-22) specifies that the dot product of
' 4
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Figure C-2., Adaptive loop configuration.
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(4) Once [Ej] is known, then 53 is formed from

r =r,+Ej j=1,42-¢q (Cc-26)

These steps are now discussed in detail.

c.3.1 21 Processing

Recall that y is the output of the linear system Zo:

C X, +c

y = 1 + Xm (C=-27)

X
where

£

yeR,x,erRt; £>q

2

ZO describes the time variation of the state vectors x. and x,, and

1
gm is white zero mean measurement noise. The column vectors of C

span T, where T is a subspace of Rz. The objective of this sectijn is
to define a filter which, when driven by y, will produce an £ dimen-
sional vector output ?i, valid at the ithﬁtime instant, where 9i is
contained in Tt. B -

The signal y is a vector function of time. The elements of y
are physically the_butputs of individual sensors. Restricting atte;£ion
to a specific single-sensor output y[t], we note that over the interval

[0,T]), the function y([t] can be represented by the complex Fourier series

o0
ylt] = 2 cneJ"“’ot (C-28)
n=oo
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where

Wy = 2n/T
T = period (seconds)
n = harmonic number (integer)
cn = Fourier coefficient
1 T —jnwot
Cn = T f yltle dat (c-29)
0

This representation assumes that y[t] is known and well behaved every-

where in the interval [0,T]

1f y({t] is sampled at a uniform rate, the sequence y[i] can be

represented by

. 27Tni
y(i) =3 Finje? "N (c-30)
n=

where

AT = sampling time (seconds)

i = denotes the ith sampled value

N = total number of sampled points in [0,T] i
where

T = NAT

Yo T sz'r -

t = i AT -
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and

N-1 _j2wni
Fn) = - Y viile N (C-31)
i=0

Equation (C-31) is known as the discrete Fourier transform, and hard-

ware is available which accepts sampled values of a signal, and which
28
outputs F[n].( )

If we generalize Eq. (C-30) to the vector case, where yl e Rz,
then we get

N-1 j2ﬂn1
y© = Eg[n]e N (c-32)
n=

where the elements of Fln] represent the values of F[n] which corre-

spond to the appropriate elements of yl.

If the x, states are oscillatory and lightly damped, a set of
associated characteristic frequencies Qa' a =1, q/2 can be identified.

Then C2>_<2l can be approximated by

2nnli 2ﬂnki
: . 3 b e
i i N N
Cx,” = ¥y, = Elnjle + ...Eln.le (c-33)
27
where the parameters nk are all integers such that the quantities N AT

fall within some small neighborhood, [Qa - ea, Qa + ea], of the

characteristic frequencies, for a = 1, g/2. This approximation may

in fact, be poor, with the error coming from the following two sources.

(1) The Fourier representation of any individual mode, based

only on series terms within [ - ¢, @ + ¢], may be inadequate.
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(2) The values of F[nk] will reflect the measurement noise Xm'

The development of a Fourier representation of y[t] is to some
extent a digression. Recall that the basic intent of this section is
to define a filter whlch when driven by X[t]' will produce a set of
£ dimensional vectors [9 ...9 ], where each y is in t, and where the

set of vectors 2', i=1, 2 = g spans T.

The Fourier discussion was introduced because, in cases where y;
1s a sufficiently accurate approxxmatlon of C2_2, then all the vectors

F [n ] will be in T and the set of F [n 1, where the nk are defined

for Eq. (C-33), will span 1. This is a useful idea because it allows
a transform error estimate directly from the spatial distributions of
the Fourier coefficients, and the inverse transform (estimate of C2_2 )
does not need to be calculated. The issue of the error in this proce-

dure remains.

In general, if the 51 and §2 states are interlaced in frequency,

then the errors may be large. However, for the special case where x

-1
and 52 are separated in frequency, and where specifically 52 falls in
the band [ml, wzl, ?; can be formed

By 2mni

v, = ZF[n]e N (C-34)
n=n,
where

o N AT
n, = integer [wl 37 ]
. N AT
n2 integer [w2 27 ]

If N and AT can be picked so that w N AT/ and wN AT/ are in fact in-

1 m2 2

tegers, and there is no noise, then 91 will correspond to C.x_ exactly;

22
and F [n 1, k = n,...n2 will span T. For applications in this thesis, the

set of vectors g [nk] are used to drive the transform error estimates.
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The presence of measurement noise will introduce a random error
to each element of gjn]ln =n,, n,. The magnitudes of these errors
can be described statistically based on knowledge of the noise charac-
teristics. This thesis does not treat this area definitively. 1Instead,
it is argued heuristically that the effect of noise is small for the

case of real interest—the case of an x_  mode which is excited, and

lightly or negatively damped. Here, thz structural amplitudes, would
tend to be significant and the resulting signal~to-noise ratio would
be large. Additionally, spectral filtering, which is normally intro-
duced to account for discrete effects in the FFT may have desirable
noise suppression qualities. In the illustration of the adaptive
process, which is presented later in this appendix, a Hanning window
is used to process the output before the FFT is calculated, However,

a detailed investigation of the effect of noise was not undertaken.

C.3.2 Estimation of E,
J

The estimation algorithm which is developed here is driven by
the signal 2 and produces an estimate of the error in T3, that is an
estimate of [Ej]. Specifically, it is assumed that a set of measure-
ments {yl...yk} is available, where each yi is in the subspace 1. These

i -
y may be spatial arrays of Fourier coefficients. 1In any event, the
relation

i
< . - E, , > = (C°35
[rJ J] Y 0] )

must hold for all j, j =1, £ - q, and all i. In effect, the estimation

problem reduces to finding the Ej' so that each quantity [r, - E.] is
J J

orthogonal to the set of measurement vectors. The Gram-Schmidt formula-

GWip
-

tion provides an iterative method of finding the Ej. Specifically, the
iteration

. .
el o gty dyd
IS

3 (C-36)
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b

where

=0

i i i2
R
< gy /1y

[WHR SR Y o)

where
| | & geometric mean

< > > inner product

will converge to E_  when {yl...xk} span the subspace t. The term
j 24

<r, - Ei i i
i~ e ¥ X
ly*l

[N L

(C-37)

is the orthogonal projection of rj - E; on yl. The algorithm assumes
1l
}

that rj - E; is orthogonal to the subspace spanned by {yl...yl- , and

1

i+
then ensures that rj - E; will be orthogonal to the subspace spanned

by {Xl...zl} by subtracting out the projection of rj - E; on xl. The
Gram-Schmidt gain is optimal, but alternate gains are possible. Any

gain sequence G;, such that

(C-38)

will converge. Convergence will be fastest for y close to 1.

C.3.3 Transform Update

"we -

If a converged estimate of the transform error [Ej] is available,

then the output transform can be updated using the relationship

’1'3 = T, - [Ej] (C-39)
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Prior to taking this step, the calculated [Ej] can be checked for con-
sistency. By definition, the true error associated with any rj must
lie totally in the subspace 1. It is, therefore, legitimate to require
that, at any step, the condition
= i
TE, = 0 (C-40)
J
must hold. If the condition does not hold, then E; will have components

in the Cl space which can be subtracted out by

— i
i . <r., E.> F
B - E;-Z—“—lf—’ﬁ
k lrkl (c-41)

where the fk are the row vectors of the true transform T. In reality,
the transform T will be unavailable for use in an algorithm. However,

the approximation

(r, - E%) r

3 3 o~

|z, - | Iz | (c-42)
i T3 3

will become increasingly good as the T components of E; converge. It

is suggested, therefore, that that equation be modified to

i i i
- > -
._Ei - gt - Z <E T B B> (my E)
3 j lr, - X2 -4
k k k (c-43)

and that that equation be invoked prior to the actual update of the

transform T3.
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Cc.4 Summary

The intent has been to develop an adaptive scheme that corrects
the output transform T3 to account for system variations and model in-
accuracies. The particular scheme which is presented uses the measured-
system output to form spatial arrays of Fourier coefficients, which are
then used to drive an error estimator. The estimator itself uses geo-
metric concepts to ensure that the updated transform meets the required

conditions

T3[C1]T # 0

T3[C2]T = 0

Alternate schemes are of course possible. Some of the strengths of this

approach include the following.

(1) Frequency information is used to check T3, where T3 is

initially selected based on the system spatial response

characteristics.

(2) The Fourier coefficients are outputs from common, com-

mercially available digital processing elements.

(3) The use of nonlinear (Gram-Schmidt) gains in the estimator

aids convergence rate.

This scheme will perform best when x. and x, are in separate frequency

1 2
bands. Note alse that in this special case, the scheme is insensitive

to the specific frequency characteristics of x.. The only value that

2

is needed with precision is wl, the lower bound of the 52 frequencies.
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There are issues which remain. Perhaps the most troublesome is
the treatment of measurement noise. For a discussion of noise effects
on spectral estimates, see Kayfzg) He also evaluates several noise
compensation schemes. Despite the issues, the idea that frequency-based
descriptions can be arrayed spatially and used to update input and out-
put transforms is significant. Two examples are included in this appen-
dix to illustrate that this spatial arraying can result in mode shape
estimates.

C.5 Examples: Mode Shape Estimates From Spatial Arraying of Fourier
Coefficients

For illustrative purposes, the horizontal solar panel vibration
modes (modes 4, 8, 10, 16, 17, 31, 32) were given a unit initial dis-
placement. The output of six solar panel sensors was monitored. The
placement of sensors is detailed in Figure C-3; the mode shapes of
interest are shown in Figures C-4 and C-5; and the output time histories
are given in Figures C-6 through C-9. 1In addition, mode shape values
at sensor locations are given in Table C-1. The objective is to derive
the mode shapes at the sensor locations using just the output time
histories. To do this, each sensor output was passed through a fast-
Fourier transform, and then the resulting coefficients were arrayed
spatially. This data flow is presented graphically in Figure C-10.

Power spectral density plots (PSD[n] = 2 x C[n]z) indicate the variation
in the Fourier coefficients with sample frequency for each output.

These plots are given in Figures C-11 through C-16. There is strong
evidence of resonances in the data, as expected. The output of the fast-
Fourier transform (FFT) processors can be arrayed spatially; here a six-
element row vector is available for each n. Table C-2 is a printout of
all such vectors with lengths greater than 10-4. The available vectors
are superpositions of modes 8 and 10 at 3.9 hertz, 16 and 17 at 21 hertz,
and 31 and 32 at 60 hertz.
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NODE
output  VODES
SENSORS _ 30

Figure C-3., Solar-panel output sensor locations.

The following points can be noted.

(1) The vectors which result from the spatial arraying of
Fourier coefficients are linear combinations of the made.

shapes which occur at the frequency of interest.

(2) If a transform T3 were chosen to exclude modes (8, 10, 16,
17, 31, 32), then the vectors of Table C-2, Vi' will meet

the criteria

I,IL .

(3) Frequency methods cannot separate the effects of two differ-

ent modes which have the same natural frequency.
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Figure C-6. Example 1: output time histories (outputs 1 through 3).

206

Vi




TIME RESPONSE

SOLAR PANEL VIBRATION

1.50

0.50

BUTPUT U4
-0.50

1.80

1.50

AA AAAAAAfM\AAA AAAAJ\ AALAA
TR AR T
] I
w0 o0 | 120 180 za 300~ 3e0 w2z a8 suo
TIME »10-!

e

0:50

QUTPUT 5
-0.50

1.50

1.50

=
=
—
S
=
——
S

0.50

OUTPUT B
-0.50

F;I.SO

.00 o0.60  1.20 = 1,80  2.40 3.00 _ 3.60 = 4.20  4.80  5.40
TIME x10°!
JT _k
oe0 w0 | 300 3 . ) 5.40
TIME 10!

Figure C-7. Example 1: output time histories (outputs 4 through 6),.

207

—_— [ Ll e Tt - - - - - e e e m——— -




TIME RESPONSE

SOLAR PANEL VIBRATION

Q
o' ) — 1 i 4 L 1 . . L —t ) 1 L 1 3 3
o
m
nl 1
BV .VAUN AV WAWN AAAAAAAA A /\AAV/\v NN .
= ARV A VAVAS \VAYAAAVA \VARY (VAR VooV 4
o .
S?-]- J.
[
+ T
[ o]
(=)
‘.00  0.60  1.20  1.80  2.40 3.00 3.60  4.20  4.80 5.40
TIME ><101
[~
Q L i - n e A L. 1. L . . 3 — ) i 1 -
1 1
m
[12]
oT T
o
B N /\-\ [\ PavAN ya
= P VAR VAR
an J
;‘?ﬁ- r
[an]
1 1
Q
o
'9.00  0.60  1.20  1.80  2.40 3 3.60  4.20  4.80 5.40
TIME »x10-!
(=]
Q L . i i N b 3 JU § — 1 4 i i i L
T T
(1]
mn
ST T
m
VAN 2% Y A VY A Wt W A U A Y VPN
SV A VARV A AV " A SR VAR VAN
a -
= i
(=)
4 4
o
o
‘.00  0.60  1.20  1.80 _ 2.40  3.00 _ 3.60  4.20  4.80 5.40
TIME »10-1

Figure C-8. Example 2: output time histories (outputs 1 through 3).

208

————— e e S - - - - . _— e m—ee—— -

vy




BUTPUT 4

QUTPUT 5

QUTPUT &

TIME RESPONSE
SOLAR PANEL VIBRATION

I 3 + +
T —r y Lo

4+

™

”

o‘ L -

_ S

o

c| + 1-
! !

(]

Q

- ——
'0.00 0.60 1.20 1.80 2.40 3.00 3.60 §.20 4.80 5.40

TIME »10-1

o

o

K ——t '
'{L 4

o

m

oT T

o e—— e =

o«

m

T 1
+ +

(=)

(=]

'0.00  0.80 1.2 1.80 2.40 3.00 3.60  4.20  4.80 5.0

TIME *x10-!
(=]
O —tn 1 e d e r e s 5 N — i y -y d e 1

o
m
oT T
_\\ /J—’\\\ -
) v v
m
ol 1
)
- -+
oT
o
'e.o0  o0.60  1.20  t.80 _ 2.40 3.00 3.80 4.20  4.80  5.40
TIME »10-1

Figure C-9. Example 2: output time histories (outputs 4 through 6).
209

s e e gmam AR TR — - e e s —ae -




SENSOR
OUTPUTS

PSO
(Figure C-10)

PSD
{Figure C-11)

PSD
{Figure C-12)

bl FFT PSD
|(Figure C-13)
PS|
D
FFT (Figure C-14)
ey
SPATIAL
FAST ARRAYING
FOURIER
PROCESSING
ARRAY OF FOURIER COEFFICIENTS
MO
™ )
1N A i )
. E
*s
H
F PA
e P
R _J E
E ﬁ] ]
Q . ES
. T
. |
M
*
U U J ..J U

Figure C~10. Data-processing flow.

210




Table C~1. True values of mode shapes evaluated at sensor locations.

Frequency
Mode (Hz) sensors
3 2 1 4 5 ©
4 0 0.1866 0.1399 0.0789 -0.0789 =~0.1399 -0.1866
8 3.5 0.826 0.4067 0.0836 0.0836 0.4067 0.826
10 3.5 -0.8062 -~0.3861 ~0.0662 0.0662 0.3861 0.8062
16 21.8 ~-0.6034 0.5358 0.3618 -0.3618 -0.5358 0.6034
17 21.8 ~-0.6045 0.5884 0.3591 0.3591 0.5384 -0.6045
31 59.4 0.3422 -~0.4003 0.6639 -~0.6639 0.4003 -0.3422
32 59.4 0.3435 -0.4011 0.6676 0.6676 -0.4011 0.3435

The FFT/power spectral density software package, which was used

(28) It includes a

in the examples, was developed by Konigsberg.
Hanning window to account for the discrete effects and to enhance resolu-

tion.
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Power spectral density plot of output 2, example 1.
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A second test case was run where only modes 8, 16, and 31 were
excited. The time histories of the output are given in Figures C-17
and C~18. The output PSD calculations is given in Figures C-~19 through
C-24. The spatial arraying of Fourier coefficients results in the vectors
given in Table C-3. 1In this case, there was no multiplicity among the
excited eigenfrequencies, and the output closely approximates the true

mode shapes.
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APPENDIX D

ZEROS OF LINEAR MULTIPLE-INPUT/MULTIPLE-OUTPUT SYSTEMS

The fundamental concepts of classical control theory—poles,
zeros, transfar functions, frequency response—were originally expressed
in terms of scalar functions of a complex variable. Recent work has
generalized the scalar results to matrix functions of a complex vari-
able, and related the frequency response concepts to state-space
system descriptions. This appendix reviews the definitions and
theorems which are applicable to multiple-input/multiple-output systems.

. . . . 30
The primary source of this review is MacFarlane & Karcanlas.( )

D.1 System Description

The systems considered in this section are assumed to be de-

scribed by
x(t] = A x[t] + B ult]
(D-1)
ylt] = C x(t)
x[tl € R"
ultl € &
yitl € R"

This is a restricted case; more general results are available which
allow y to be a function of the state, the control, and time derivatives

of the control.
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Taking the single-sided Laplace transform of Eg. (D-1) yields

s x[s] - x[0] = A x[s] + B uls] (D-2)

y[s] C x[sl

If the initial conditions are all zero, so that
x[0)] = 0
then, the input and output vectors are related by
yis] = clsI - a1} B uls] (D-3)
The matrix
1

G[s] = C[sI -a]l B (D-4)

can be defined, and is commonly designated the transfer-function matrix.
(30)

Additionally, the system matrix, P[s], can be defined. Equation
(D-2) can be written
[st-a -8 | xts] x10]
= (D"S)
c 0 uls] yis)
Then P[s] is taken to be
sI - A -B
P(s] = (D-6)
C 0

Both G{s] and P(s) are useful in defining system poles and zeros, and
establishing the links between state space and frequency response de-

scriptions of system behavior.
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D.2 Definitions of Zeros

Zeros are characteristic of the way in which the system dynamics
are coupled to the environment in which the system is imbedded, and are
associated with specific values of complex frequency at which transmis-
sion through the system is blocked.(30) In the literature, three inter-

related classes of zeros are defined.

D.2.1 System zeros(31)

The system zeros are defined as the zeros of P[s]; those values

of complex frequency s = z; for which

z,I -2 -B 50 0
= (D-7)
C 0 g 0
where
ult]l = g exp {zt] 1 (t)

1(t])

Heaviside step function

(30)

D.2.2 Transmission zeros

The transmission zeros are defined as the zeros of G(s); those

values of complex frequency s = z; for which
-1
C[ziI-A] B = O (D-8)

These zeros are physically associated with the transmission blocking
properties of the system. Equations (D-7) and (D-8) can be solved
directly from the minors of P[s] or G[s] using the method developed by

Kontakos.(zs)
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31
D.2.3 Decoupling Zeros( )

Output decoupling zeros are defined as the values of complex

frequency s = z, for which the matrix

z,I-A
Pols] =

loses column rank. BAnalogously, input-decoupling zeros are defined as

the values of complex frequency s = zi for which the matrix

P,[s] = z,I ~A -B
i i

loses row rank. Input/output decoupling zeros occur at frequencies

where both P° and Pi lose rank.

D.3 Relationships Between Various Types of Zeros

Rosenbrock(sz) has established that the system zero definition

is the most general, and that the following relationship holds.

{system zeros} = {transmission zeros
+ input dedoupling zeros
+ output decoupling zeros}

- {input/output decoupling zeros}
He also has proven that if Eq. (D~1) is controllable and observable,

then there will be no decoupling zeros, and the set of transmission

zeros will be identical to the set of system zeros.
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D.4 Theoretical Results

D.4.1 1Invariance of Transmission Zeros(34)

Transmission zeros are invariant under the following transforma-

tions.
(1) Nonsingular coordinate transformations in state space.
(2) Nonsingular transformations of the inputs.
(3) Nonsingular transformations of the outputs.
(4) State feedback to the inputs.
(5) Output feedback to the rates of change of the states.

In terms of the quantities shown in Figure D-1, transmission
zeros are invariant under all choices of L and K, and all nonsingular

choices of T, G, and F.

Proof: (See Reference 34.)

Figure D-1. Summary of transformations under which
transmission zeros are invariant.
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D.4.2

Relation Between Decoupling Zeros and Controllability,

Observability

I1f a mode is uncontrollable, the real pole (or pair of complex

conjugate poles) associated with the mode in question will be directly

cancelled by an input decoupling zero, or complex conjugate pair of

zZeros.,

Proof:

The proof treats the case of an oscillatory
mode. The arguments for a real mode are similar.
The system equations are given by Eq., (D-7). A
transform can be chosen (see Appendix E), which

allows the system equations to be written in block
diagonal form

X = Ax+Buy
.~ o~ (D-9)

Y = ¢x

where
[ R C ]
A1 Bl

- A2 . B2
A = '.. + B =

»
esesee

r
L
P

[ T—

—
<4

2 o

and
—t;wi uui\/l - CZ
i

-widl - 42 ~Lw,

1

The ith mode will be uncontrollable if Bi = 0.
Also, note that the matrix Pi
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p, = [ls1-2) -3]
will lose rank for the case when Bi = 0, when
s = -Cwi i.[l - Czwi, which implies directly that
input decoupling zeros will exist which cancel

the poles of the ith mode, Q.E.D.

If a mode is unobservable, the real pole, or pair of complex
conjugate poles associated with the mode in gquestion will be directly

cancelled by an output decoupling zero or conjugate pair of poles.

Proof: The proof is the dual of the controllability/input
decoupling zero proof above. It invo! res relating
the conditions for unobservability of the ith mode

to the frequency at which the matrix Po

sI - A

loses rank.

D.4.3 Movement of Poles with Output Feedback

Poles that correspond to modes which are uncontrollable or un-

observable are not affected by output feedback.

Proof: The system described by Eq. (D-1) can be put

in controllability/observability canonical form(e)
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<

where

the

the

the

the

The poles of Eq.

states

states

states

states

0] 7] rgl-
° || =
0 Xy
aad [ ZXa

e

(D-10)

controllable and observable.

uncontyrollable but observable.

controllable but unobservable.

uncontrollable and unobservable.

(D-10) are given by the

characteristic equation

det [Au] det [A22] det [A33] det [A44]

I1f an output feedback law u =

closed-loop poles are given by

det [A11 - B

1

= 0

-Ky is used, the

KCl] det [A221 det [A33] det [A44] = 0

Note that the poles associated with unobservable or

uncontrollable states are invariant for all choices

of gain matrix K, Q.E.D.
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If a system which is controllable and observable and which has

an equal number of inputs and outputs has output feedback of the form

then, as K + ®, a number of closed-loop poles equal in number to the
finite transmittance zeros will tend asymptotically to the zero loca-

tions, while the remainder will tend to infinity.(30)
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APPENDIX E

SINGULAR PERTURBATION THEORY

Singular Perturbation Theory is applicable to dynamic systems

which can be modeled by

x = flx,z,ut,u
Ué = g[)‘(_rzr}_lltru] (E_l)
_X = h[l{,_Z_,u,t]

where

p is a scalar u > O

x and z are state variables associated with dynamic states; y is the

system output.

If the system of interest is linear and time-invariant (LTI),
Eq. (E-1) can be written

¥ = Apx+hzeBu X000 = x,
Mz = A x ¥ Azzg + Bzg z[0] = z, (E-2)
Yy = Cx+Cyz+Du

For applications in this thesis, the x states represent low-

frequency modes, the z states represent modes of higher frequency, and
231




v is the square of the ratio of the frequency of the fastest x mode to

the frequency of the slowest z mode.

Linear system theory provides the methodology to completely
assess the forced and unforced response and the stability of any system
which can be represented by Eg. (E~-2). It is necessary, however, to

consider the entire [n + r] order system in pursuinc this assessment.

There are engineering motivations to develop appropriate reduced-
order representations of Eq. (E-2) for use in control system design,
particularly if the design requirements focus primarily on performance
in set frequency bands. 1In amplifier design, for example, low-, middle-,
and high-frequency models are typically used in designing to meet sinu-
soidal steady-state specifications. In this application, and others,
reduced-order models can introduce significant efficiencies into the
design process, and greatly reduce the complexity of the controller
configuration. It is important to note, however, that the reduced-order
model must be an adequate representation. There are numerous examples

(35, 36)

in the control literature which indicate that undesirable and

even unstable designs can result from heuristic order reduction schemes.

Singular Perturbation Theory offers a mathematically rigorous
approach for constructing an asymptotically correct reduced-order
approximation of Eq. (E-2). Specifically, the eigenvalues associated with

the slow behavior of Eqg. (E-2) can be represented as a series expansion

A= g r A

2
2 A .. (E-3)

Formal results are available which investigate the asymptotic behavior

7
of this series(3 ) and establish that

B0 > A (E-4)
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where the AO are the eigenvalues of the system

X = A ¥t Az B
o = A21‘ + A22§-+ Bzg
Furthermore, for some neighborhood u ¢ [O,uol, it is valid(38) to approx-
imate the unforced low-freguency behavior of Eq. (E-2) as
x = (A -A ATla Ix (E~5)
- 11 12 22 21°—
(E-6)

and the unforced high-frequency behavior as

(E-5) and (E-6) are asymptotically correct reduced-order models

Equations
for the slow system, they treat the fast modes as dc values.

They account for the coupling between low- and high-frequency modes, but
The work of Klimoshev and Krasovskii is key to the discussions

of this report, and is presented in the following.
38
( ))

Lemma {(Klimoshev and Krasovskii
For a system governed by

x = Apx+az xl0l = x,
Wz = RAX + Az z{0} = z, (E-7)
be stable matrices (all the eigen-
there exists a

and A22
Then,

- -1
= - A
Let A =21 7 Bofhy
values of the matrices have negative real parts).
positive number y such that for every u € [O,uO], this system is asymp-

totically stable.
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For the cases of state or output .eedback control laws, and no-
control feedthrough in the output

u = -KCx-KC.z (E-8)

the closed-loop equations of an LTI singularly perturbed system can be
written

x = [a); - BiKGlx + (A, - BiKCylz x(0l = x,
vz = fa, - 52K1C1]§ + [A22 - BZKZCZIE z[0] = Zq4 (E-9)
Equation (E-9) is of the same form as Eq. (E-7). Expleoiting

this fact, the KK lemma has been applied to stabilizing feedback

controllers,(g) optimal regulators,(40) and controller configurations

which include dynamics in the feedback loop.(lo)

It is clear that the approximate models given in Eq. (E-5)

and (E-6) are strictly valid only for u = 0, and that asymptotic

stability conclusions based on these reduced-order models are valid

only for u € [O,ull. A theoretical bound on Mo particularly as a

function of the system dynamical matrix, is not available in the litera-

ture. Numerical investigations have placed u

1 in the 0.3 range for
(36,40,41)

specific problems.

However, Mahapatra(42) has developed a bound for E[t], the error

in x as approximated by Eq. (E-5) due to treating the high-frequency
modes as dc. If the eigenvalues of A

A11 A12

(E-10)

A21/u A22/u
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are designated Ai' i=1...r, ‘All < IAZI < ... < lkr[, and are assumed
distinct, then ||E[t]]| is bounded by
r
2]11/2
leter] <x|ir- n]l/z +1 Z [%] (E-11)
i=n+l i
where
x = [lsl +20s,0]
1 " 2 0
and uft] is a step input of magnitude uo,
The error can be made small if
r
“ 2 {172
(r - n)1/2 +1 L [%] > 0 (E-12)
i=n+l i

This condition is reached when n + r, an obvious point, or when the

neglected dynamics are very high frequency—in other words p + O.

E.1l Application of Singular Perturbation Theory to the Space

Vehicle Problem

The singular perturbation formulation applied here is due to
Balas.(lo) He treats the specific case of controlling a system with
fast and slow modes where the full state vector is unavailable and must
be reconstructed from available measurements by a Kalman filter or a
Luenberger observer. 1In this case, the appropriate low-frequency

reduced-order model is

1% |e
[
>
%
+
|
[«

(E-13)

<
]
0
+
g
c

where
= A, - A A a
11 11 12722721
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1

By = By T BoRnoB
T, = c, -cal-na
1 1 222 21
D c, -calls
1 272272
A22 is assumed to have an open left-half-plane spectrum. Balas

establishes that the feedback compensator has the form

| Woe
(]
>

+ B.G - KC, - KDG]% + Ky

e
]
9]
x

(E-14)

which accepts the system output y and produces a stabilizing control u,
and proves that if the system described by Eq. (E-9) is controllable
and observable, there exists a ul, such that for all u € [O,ull, the
gains G and K can be chosen so that the full system (Eq. (E-2) with
compensator feedback from a reduced-order observer (Eq. (E-10)) will be
stabilized, and the observer estimate will converge to the actual state

of the slow system.

The dynamical system of interest is summarized in Figures E-1
(configuration), and E-2 (the open- and closed-loop system equations).

The x. states are to be controlled; the ia actuator states, 55 sensor

1

states, and x
! —4

explicitly included in the controller design. The detailed development

structural modes are higher frequency and are not

of these equations is given in Appendix F.

Using Balas' notation, the following identifications can be

made.
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11 1
-1
a, © 0 A 0 o}
-1 -1 -1 -1 -1 -1 -1
= B = - -
A2 0 Ay BL, A2z By BsCqPy BaC Ry By RSB CA
-1 -1 -1
A
B4Ca 0 4 A4 B4CaAa 0 A4
A, = [alca 0 o]
0
Ay T |BG
0
B
a
B, = 0 B, =]o0 c, =0 c2=[ocso]
0
D = 0
Then the system model becomes
Xx = A11x+Blu
y = Elx + Du (E-15)
where
A = aA.-a aAla = a
11 11 12722 "1 1
B = B A .alsg B
1 T 12722 72 1
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1

Cp = Cp =Gy = &
- -1 -1
D= € - CAE, €2y By

Implicit in these relations are the assumptions

The compensator that Balas' theory suggests is

+ - - - X +
[Al BIG KCl KC4A4 B4G]X Ky

~

u = Gx (E-16)

N
i

for application to the space vehicle. This controller form is increas-

ingly valid as u gets small.

By contrast, a compensator which neglects the fast modes complete-
ly would have the form
o N
X [A1 B

- % +
1G KCllx Ky

~

u = Gx
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APPENDIX F

EQUATIONS OF MOTION

General formulations of the elastic equations of motion of a free
vehicle in flight consider a three-dimensional body with six transla-
tional and rotational degrees of freedom and acknowledge the distributed
nature of inertia, stiffness and damping forces. Vehicle motion and
deformation are described in terms of coupled partial differential
equations in space and time, and the appropriate boundary and initial
conditions. Simplifying assumptions, which decouple, linearize, or
discretize these equations, are justified for specific vehicles and sets

of initial conditions.

This appendix is included to detail the simplifying assumptions
which were made in this report, and to specifically exhibit the result-
ing vehicle equations of motion. Bisplinghoff and Ashley(43) derive
the forced and unforced response equations for a three-dimensional,
flexible, zero-damping vehicle. They use continuous representations
for space and time, and restrict their attention to the small-deflection,
zero-net angular-momentum case. These response equations are fundamen-
tal to this report, so this appendix begins with an outline of the
Bisplinghoff-Ashley derivation. Then the response equations are put in
state space form, and the effect of including damping is discussed. The
appendix also discusses the eigenfunction normalization convention and

presents the numerical state space descriptions of the satellite and

the F-8 aircraft.
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F.1l Coordinate Systems

The vehicle of interest is modeled as a three-dimensional elastic
body which is unrestrained in space. Referring to Figure F-1, the body
is allowed to assume small deformations with respect to the orthogonal
x-y-2z axis system, a body fixed-axis system with its origin at the

vehicle center of mass.

Figure F-1. Three-dimensional unrestrained elastic body.

Vehicle motions may also be described in terms of inertial co-
ordinates. The position vector £' is referred to an orthogonal-axis
system x°,y”,z” which is fixed in space. The body is allowed to assume
large rigid-body displacements with respect to this inertial system.

The vector 50

the position vector of the vehicle center of mass.

is also referred to inertial coordinates; it represents

Two vector relationships are useful in describing vehicle motion.

The equation
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where r is the particle position vector in the x-v-z axis system, re-
lates motion in inertial coordinates to motion relative to the rehicle

center of mass. The second equation

where g is the position vector from the center of mass to a particle
in an unstrained vehicle, and where the vector d 1s an elastic deforma-

tion vector, relates deformations to the static equilibrium configura-

tion.

The developments in this appendix will use these coordinate

systems and position vectors.

F.2 Equations of Equilibrium(43)

If the body of interest, shown in Figure F-1, is acted on by
surface tractions per unit area, designated by the vector F, and body
forces per unit volume, designated by the vector R, then three vector

equations of equilibrium must hold.

(1) Force Equilibrium
ds
= —— F-1
2w F-
where
P=/]fRdV+ﬂFdS
v S
dr
E = M5
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P 1s the resultant of applied forces, G is the momentum vector,

and M 1s vehicle mass.

(2) Moment Equilibrium
dH
L = It (F-2)
where
L o- ﬂfz‘BdV+ff£*£dS
\Y S
dr

(e
1

[

v

L 1s the resultant of applied moments and H is the angular momen-

tum vector.

3 Elastic Equilibrium
1 T ] —
s it s fffr e
\
+'/:/‘ff « [F1%[r - Es] av (F-3)
v
where
3 dr 1 3 d£0 dr dq
A = - —_— = - - + — ¥
: dt | dt dt | dt dt dt

.} refers to quantities evaluated at the center of mass.

v
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I, is the position vector to the point of application

of F.

I' is the Maxwell second-order tensor of Ilexibility

influence functions.

These equations assume small deflections, which allows the use of linear

stress strain relationships.

F.3 Free Vibration

In the absence of external forces, the x-y-z system remains inert
and the simplified forms of Eq. (F-~1), (F-2) and (F-3), which are appro-

priate for the free-vibration case, are as follows.

42
jf %p av = 0 (F-4)
J/ at

2

- dgq
ﬂ/[r+31x 50 & = 0 (F-5)
J at
1 - 4’y
S_SO_E[VXEOJXI‘ = —[[fr "-d—t—i{)dv (F-6)

The solution to these equations is assumed to be
glx,y,z,t] = ¢[x,y,2]Tlt] (F-7)

where ¢(x,y.,z] = ¢x[x,y,z]£ + ¢y[x,y,z]l + ¢Z[x,y,z]5 is an eigenfunction

l,\‘

in vector form which represents a natural mode shape, and T[t) is a

function of time.
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Equation (F-7) will be the solution to Egq. (F-4), (F-5), (F-6)

provided the following dynamic conditions hold

. 2
T+ wT = 0 (F-8)

$lx,v,2] = wz.[/'fGEX.y,z; g£,n,5] ¢ (€,n,z]pdEdndg (F-9)
v

where G is a second-order influence function dependent on system stiff-~

ness, mass, and inertia properties. The exact relation is given in

Reference 43.

The unrestrained elastic vehicle has three translational modes of

zero frequency which can be represented by the vector forms

& = 2l
$, = b (F-10)
8y = ok

and three rotational modes, also of zero frequency, which are

8, = -z3 + vk
$s = zi- Xk (F-11)
g = vi X

In addition, there are an infinite number of modes of finite

frequency defined by the solutions to Eq. (F-8) and (F-9). Each pair-

wise combination of these solutions satisfies the orthogonality relation

fffgi Tpye A = 0 i# (F-12)
v
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Note that the rotational modes are uncoupled. This is a result of the

assumption that internal angular momentum is small.

F.4 Forced Motion

The forced motion of an unrestrained elastic vehicle can be
described in terms of the natural vibration modes of the free vehicle.
As defined earlier, the displacement vector of a particle in inertial

coordinates is

r = £O + r (F-13)

where r = ¢ + q

The elastic deformation vector g can be defined in terms of the free-

vehicle natural modes

8

q = 8, [x,y,21E, [t] (F-14)

The normal coordinates Ei and the vectors 56 and i are determined from

the equilibrium equations.

Equations (F-1) and (F-2) provide six scalar relationships which
define the translation and rotation of the x-y-z body axis system.
Equation (F-3) defines the deformation displacements of the vehicle
with respect to this axis system. Using Eq. (F-12) in Eq. (F-3) yields

o

1 - i
D CEERCEE SURENCL &) T2

—fffl" . [56 +_i_]p dv+ffﬁ . F6[£-£s] dv (F-15)
v v
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Using orthogonality Eg. (F-11l) can be simplified to

M.é. + M.w?&. = E, [ =1,2,...,»] (F-16)
173 33173 ]
where
2
M, = L. dv
] ,[[ ,¢]§p
v
=, 0= [F » ¢.) ds
s = Jf e
S
F.5 State Space Representation of Forced Motion Equations

If instead of g being a function valued three vector, g is taken
to be the vector of displacements at structural node points then the forced
deformation response of an unrestrained elastic vehicle to a single input,

as derived from Eq. (F-3), can be presented as

Mg + Kg = bu (F-17)
M and K are mass and stiffness matrices, b is an input distribution vec-
tor, and the dimension of g is three times the number of points used in the

analysis. Use of orthogonality, and the displacement representation given in

Eg. (F-12), allow Egqg. (F-17) to be uncoupled and written as

(T1€ + [\w? }f, = [\—1— :l bu (F-18)
io LTINS

or in terms of first-order differential equations, as

. [~ A
A b,
x = ) x + | 22 u (F-19)
.y b
1 1
l- “ L e
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which is block diagonal.

F.6 Viscous Damping Effects

If viscous damping effects are modeled and included in the formu-

lation, Eq. (F-18) becomes

. ~ -1, < 2 - -1
(11 + { m, CE + wy £ = m, u (F~20)
~ ~ ~

C is a matrix of damping coefficients. If C is a linear function of
either M or K, the term [\mi\J-lC will be diagonal, and Eg. (F-20)

can be represented in state space by

- - - 9
Al bl
x = By x +| P2 u (F-21)
A, b,
1 .l
L J L S
0 1 0
A, = B. = L
l -w, =28.,w, 1 m,
1 1

This special case is called modal damping, and has as one consequence
that the system eigenvectors remain real, and the displacements remain

in-phase at all frequencies.(44)

. a
If [C] is not a linear function of [M] or [K]}, then [\mi\J C will

not be diagonal, and the scalar differential equations in Ei will be
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coupled. The cross-coupling terms will depend directly on the values

of the damping coefficients, and if damping is low, then a representa~
tion of the form of Eq. (F-21) may be approximately correct. However,
an exact damped system block-diagonalization transformation, valid for
arbitrary C matrices, is given by D'Azzo and Houpis.(45) They show

that any dynamical system can be put in the canonical form

Al bl
X = B, x + k.’z u (F-22)
A b,
i i
where
A, = A, b, = b, for real roots
i i i i
A, 1 0 0
i
A, = a X, 1 b, = . for repeated roots
i i i ;
0 0 A, by
i
and
a 8 bll
A = b. =
i 8« i b2i
Ai = a + Bj for conjugate roots
A, = a- B,
1 J

The advantage of these canonical forms, Eq. (F-19), (F-21) and
(F-22), is that the modes are uncoupled dynamically, and the dynamic
response characteristics are immediately evident. The coupling has

shifted to the input distribution, and output matrices.
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F.7 Conventions
Normalization

(1) The mode shapes are determined only within an arbitrary
factor. A normalization can be used, provided that it is
consistently applied. For this work each mode will be
divided by max [¢], which ensures that the maximum

X,Y.2
magnitude of any normalized eigenfunction will be 1.

(2) The discrete eigenvectors, which are calculated by NASTRAN
(specifically the satellite mode shapes), are normalized

so that each eigenvector ii satisfies the relationship

T =
pymo. = 1.

(3) Note that in the representation

Z Qj (x.y,Z)Ej(t)

j=1

g(xIYIzlt)

F(X:Y,Z,t)?j (XIYIZ) ds

s I
] ff b5 0 %

S

T
+
£
3°]
Y
it

multiplying ¢j by any constant will not change the rela-

tionship between F(x,y,z,t) and g}x,y,z,t).
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26
F.8 Equations of Motion of the F-8 Aircraft( )

The F-8 aircraft is in a controller design example in Appendix A.

The mass and geometric data for this aircraft are given in Table F-1.

Table F-1. Mass and geometric data for the F-8 aircraft.

Mass 9994 kg (648.8 slug)
Chord 3.59m (11.8 £t)

. 2 2
Wing Area 34.87 m (374.9 (ft) )
Tail Length 4.8 m (15.7 ft)
Sensor Location 4.57 m (15 £ft)

For purposes of Appendix A, rigid-aircraft lateral dynamic behavior

can be described by

X = Ax +Bu
where
w 8
X a
X = u =
wz 8
r
L B ]

These state equations are written for a body axis coordinate frame whose
X-axis is inclined to the trimmed velocity vector by the angle of

attack uo. The roll angle, ¢, is the Euler angle rotation about the
aircraft X axis and its rate of change, therefore it contains components
of the angular velocity of the aircraft along both X and Z axes (see

Figure F-2).
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AIRCRAFT ROLL 80DY AXIS
X
A

BODY AXIS ROLL RATE

WX

> - -—» ROLL STABILITY AXIS
U\K\ xuﬂ
AIRCRAFT TRIMMED

VELOCITY VECTOR

BODY AXIS YAW RATE

W,

A
AIRCRAFT YAW BODY AXIS

YAW STABILITY AXIS
Z(st)

Figure F-2. Coordinate axis for aircraft equation of
motion.

The flight condition of interest is Mach = 0.56, 6706 meters

altitude, and ay = 7.75°. For this condition

) 1.0 0.1361 0 1

A = 0 -2.625 1.91 -29.80
0 -0.0759  -0.427 2.650

[ 0.0555 0.1359  -0.9974 -0.2173 J

[ o 0 T

27.0 6.13
B =

1.420 ~3.55

| 0.002315 0.04222
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F.9 Equations of Motion for the Spacecraft

F.9.1 Spacecraft Description

The spacecraft of interest in this thesis is a spaceborne optical
imaging system similiar in design to the space telescope. The design
and performance considerations, operation, and geometry of this system
are discussed in Section 2. The intent here is to describe the struc-

tural and dynamic modeling that led to the satellite equations of motion.

The optical system consists of two mirrors and focal plane arrayed
in a Cassegrain configuration. The structure which supports the optical
system consists of a rigid base and a metering truss. The rigid base
supports the primary mirror and the focal plane, and contains auxilliary
equipment for cooling the focal-plane sensors and for processing data.
The metering truss is configured to support the secondary mirror within
the geometric constraints of the optical design. Two-flexible solar
panels are rigidly attached to the base section and cre sized to meet

the power requirements of spaceborne cryogenic optics.

The structural configuration and node-point numerical designations
are shown in Figures F-3 and F-4. Truss members are hollow graphite-
epoxy tubes, joined at nodes with metallic connectors. For design
purposes, the moment carrying capacity of the joints is assumed to be
small. Graphite epoxy was chosen as a primary material because its
strength~-to~weight ratio is equivalent to aluminum or steel, and its

thermal expansion coefficient is very small.

The components of the structure are shown in Figures F-5 through
F-7. There is a basic box configuration (Figure F-5) which is extensively
stiffened in the base area (Figure F-6) and along the truss (Figure F-7).

Truss-element descriptions are given in Table F-1.
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Figure F-3, Structural configuration and node-point numerical
designation — side view.
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Figure F~4 Structural configuration and node~point numerical
designation — top view.
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Figure F-5. Components of the structure of the basic
box configuration.

-

Figure F-6. Components of the structure of the basic box
configuration, stiffened in the base area.
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Figure F-7. Structural components of the basic-box configuration,

stiffened in the base area and along the truss.

Table F-1. Satellite structural data.

Structural Material: Graphite Epoxy

Density = 1720 kg/m3

Youngs modulus E = 1.24 x lOll N/m2

Truss Member Sizing

Type Area (mz) Use

200 3.75 x 10—4 basic truss members

300 5.97 x 10_3 solar panels and base section stiffners
-3

400 4.28 x 10

support structure for secondary mirror
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Spaceborne optical-grade mirrorﬁ(46)are typically composite-
sandwich constructions - : "glossy" low thermal-expansion materials.
Tradenames of available materials include CERVIT from ITEK and ULE
from Perkin-Elmer. Mirrors which are consistent with the spacecraft
under discussion have masses of 100 kilograms (secondary) and 700 kilo-

grams (primary), and have natural frequencies above 60 to 70 hertz.

F.9.2 Structural Modeling

The structure described previously was modeled with finite-
element elements and analyzed using Nastran. The following assumptions

were made.
(1) Small deformations.
(2) Leads below buckling limits.

(3) Member frequencies and mirror freguencies high compared to

truss frequencies.

(4) The mirror mounting scheme prevents structural deformations
from deforming the mirrors. This assumption implies that
mirror masses are to be accounted for (but not mirror

stiffness).
(5) Node connectors can support moment loads.

The finite-element model allowed for 240 degrees of freedom. One
hundred response modes were derived from this model. The Nastran
structural routines assume that there is no structural damping and
that modes vibrate in phase. The vehicle mass properties are given

in Table F-2.
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Table F-2. Satellite mass and inertia properties.

@® Total Mass 2.95655 x 104 kg

® cg
x = 0
y = 0
z = 6.428 m

@® Inertial Matrix (x, y, 2)

1.61277 x 10° -6.72754 x 10° 0
3 6
-6.72754 x 10 1.61277 x 10 ¢}
0 0 1.5397Q9 x lO5
® Inertia Matrix (principle axes)
6
1.61950 x 10
)
1.60604 x 10
5
1.539709 x 10
® Component Massess
Secondary Mirror 100 kg (25 kg/node: 75, 76, 77, 78)
Primary Mirror 700 kg
Support Equipment and 100 kg ‘ (160 kg/node: 6, 7, 8, 9, 10)
CMG (Base)
Solar Panels 72 kg (12 kg/node: 21, 23, 25,

26, 28, 30)
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F.9.3 Vehicle Response Modes

Table F-3 gives the structural and rigid-body eigenfrequencies.
Associated with each of these frequencies is a response mode. The modes

can be categorized by the dominant moticon.
(1) Translation, Modes 1, 2, 3 (Figures F8 through F-10)
(2) Rigid~Body Rotation, Modes 4, 5, 6 (Figure F~11 through F-13)
(3) Solar-Panel Deformation

Vertical
symmetric, Modes 9, 15, 34 (Figure F-14)
asymmetric, Modes 7, 18, 33 (Figure F-15)

Horizontal
symmetric, Modes 8, 17, 32 (Figure F-16)
asymmetric, Modes 10, 16, 31 (Figure F-17)

(4) Upper-Lens Vibration

Membrane, Mode 22 (Figure F=-19)}

Rotation, Mode 50 (Figure F=-20)
(6) Pure Torsion, Modes 14, 28, 29, 41, 44 (Figure F-21)
(7) Pure Axial, Modes 24, 38, 47, 48 (Figure F-22)

(8) Bending

No Mirror Rotation, Modes 23, 30, 39, 40 (Figure F-23)
Top Mirror Rotation, Modes 20, 21, 25, (Figure F-~24)
26, 42, 57

(9) Coupled Axial, Torsion and Upper Lens
Membrane, Modes 11, 36, 37 (Figure F-206)

(10) Coupled Axial and Symmetric Solar -
Panel Vibration, Mode 19 (Figure F-27)
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Table F-3. Rigid-body and structural vibration eigenfrequencies.

Mode Freq (rad/s) Freq (Hz) Mode Freq {(rad/s) Freq (Hz/s)
l to 6 0 0 33 376.5 59.93
7 22.02 3.50 34 376.9 53.98
8 22.75 3.62 35 345.0 62.86
9 22.79 3.62 36 408.6 65.03
10 23.53 3.74 37 445.4 70.88
11 36.02 5.73 38 448.,9 71.44
12 40.14 6.39 39 457.8 72.87
13 41.05 6.53 40 470.2 74.84
14 46.91 7.46 41 478.5 76.16
15 135.40 21.55 42 542.9 86.41
16 137.4 21.87 43 543.0 86.41
17 137.9 21.94 44 555.3 88.38
18 139.1 32.13 45 561.0 89.28
19 146.7 23.35 46 607.1 96.62
20 147.6 23.49 47 607.1 96.62
21 147.6 23.49 48 728.5 115.95
22 218.1 34.71 49 729.0 116.03
23 260.2 41.41 50 730.4 116.23
24 268.2 42.68 51 761.4 121.18
25 295.7 47.06 52 761.5 121.19
26 299.5 47.35 53 762.4 121.33
27 299.2 47.62 54 767.7 123.19
28 304.4 48.45 55 771.3 122.75
29 310.7 49.45 56 784.1 124.79
30 322.6 51.35 57 795.9 126.67
31 373.2 59.40 58 795.9 126.67
32 374.2 59.56 59 808.2 128.63
60 810.8 129.03
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Rigid-body translation: X.

Figure F-8.

Ko

L A |

Rigid-body translation: Y.

Figure F-9.
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Figure F-10.

Rigid-body translation: Z.

Figure F-11. Rigid-body rotation: X.
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Rigid-body rotation: Z.

Figure 13.
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Figure F-14.

Vertical symmetric solar-panel deformation

modes.
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= 3.62 Hz
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Horizontal symmetric solar-panel deformation

modes.

Figure F-16.
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= 42.6 Hz
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Pure axial vibration.

Figure F-22.
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Figure F-25. Bending mode:
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F.9.4 Actuators and Sensors

Sixteen control inputs are available for the structure under dis-
cussion. Control moment gyros located in base section (node 5) provide
moments in the Wyt Wy and w, directions. In addition, 13 member actua-
tors are provided at the locations shown in Figure F-28. They are high-
bandwidth piezoelectric devices deployed in series with the members.
They provide axial force in the member direction. Devices of this
kind have been demonstrated in the laboratory for small~scale structure.

The future development for space application is conjecture. Actuators

(47

were placed in locations that provided control authority to the 51 modes.

No definative attempt was made to optimize these locations.

Figure F-28. Member actuator locations.
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The output of 38 sensors is available to the control system. A
platform located at node 5 provides -he angular orientation of the vehi-
cle with respect to inertial space. In addition, two other sets of sen-
sors are deployed. Thirteen piezoelectric sensors are located with the
member actuators and provide the relative elongation of the member in
question. These sensors operate on the same principle as the actuators.
Then, along the solar panels, x-y plane displacement measurements are
made at 12 locations (nodes 1, 3, 21 to 30), and Z direction displacement
measurements are made at 10 locations (nodes 21 to 3Q). Several mechan-

8
isms are available for making these measurements. Lockheed(4 )

has
developed a high-bandwidth laser-ranging sensor which looks promising.

Alternately, low-cost accelerometers could be used.

Significant actuator and sensor implementation issues must be
addressed before the vibration control of spacecraft is feasible. There
are very few space-qualified sensor/effector alternatives available,
particularly electric-powered displacement actuators. The schemes,
postulated previously are conceptually attractive, but undemonstrated.

This thesis does not treat the actuator/sensor issues.

F.9.5 State Space Equations

The state space model used to describe the satellite dynamic
response includes the three rotational rigid-body modes and the first
47 structural response modes. This model is used to evaluate pointing
and tracking performance; it is assumed that there is no translation of

the center of mass.

The state vector has 100 elements. The first S0 are modal dis-
placements; the second 50 are the associated modal velocities., With

the state vector defined, a state space model of the form

" % = Ax +Bu
¥ o= cx

can be constructed.
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The dynamical matrix, A, can be partitioned into four 50 x 50

components.

O : I
A = |o.o ool
AN 2 N
-0 V2T,
B AN i

The frequencies, mi, i = 1 to 50, are the eigenfrequencies
associated with modes 3 through 53 in Table F-3. Modal damping is

assumed, and [ is taken equal to 5 percent.

The input distribution matrix, B, has zero elements for its first
50 rows; the force inputs only effect states 51 to 100. Any element
th

. .th .
of B, bi+50 57 represents the force input to the i mode from the j
’

actuator. Numerically, bi+50 5 is given by the displacement of the

ith—mode shape evaluated at the j = -actuator location.

Similiarly, the output matrix C has nonzero elements only in
columns 1 to 50, reflecting the fact that only displacements are meas-
ured. For the first 50 columns, any element of C, Cij represents the

displacement of the jth mode as recorded at the ith sensor.

The influence coefficient matrices from which B and C are derived

are given in the following.
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APPENDIX G

EIGENSYSTEM PERTURBATION THEORY

Given the linear, time-invariant system ZO, described by

X = AX + Bu (G-1)
where
)n = the eigenvalues of A.
RN and Ln = the right and left eigenvectors of A associated
with A .
n
That is
AR = X R (G-2)
-n n —n
t'a = AL (G=3)
-n n —n

This appendix derives expressions for the incremental changes in Kn and

Rn as a result of known perturbations in the A matrix.

Define a perturbed matrix

A* = A + §A

then

(A + 8Aa} [BN + GBN] = [An + Gkn] [BN + GBN]
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Using Eg. (G-2), Eg. (G-5) becomes
A ‘BN + :A[BN + OBN] = 'n”BN + :An[gN + 3§N]

. , . T .
If Eq. (G-6) is multiplied by Ln, and Eg. (G-3) 1s used, then

T . .
L %A [R_+ 8R]]

T
Ly (Ry * Ry

di =
n

To first order

a* =

(G-6)

(G-7)

(G-8)

4
This expression was first derived by Jacobi. Aubrun( 4) extended Jacobi's

work by developing a relation for 6R. Specifically, if a normalization

matrix Gn is defined, such that

R G R
-—n n -—n

]
—

then, for sufficiently small GRN, denoted dRr

RT G_ dR 0
“n n -n

Using Eg. (G-9) and (G-10), Eg. (G-6) can be expanded and premultiplied

T
by R R ivi
Yy n Gn giving

; T
da = R G SAR + RT G_ A dR
n -n rn -n -—n n -n
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If Eg. {G-7) is used to eliminate di from Eg. (G-11j,

m -1 T
+ » s had - -~ Py -~
dR, = (A =-R R G_A- I} "{R_E_ G - I! AR (G-12)
N - N by et —n -n e -

Equations (G-7) and (G-12) give the incremental change in ?q and Rn

resulting from a perturbation in the A matrix. Eguation (G-7) implies

that

dx ~ 2A (G-13)

Equation (G-12) implies that

dBN ~ A 3A R for +» small (G~14)
-n n

Additionally, for the special case where Z. is a self-adjoint

0
system, orthonormal modes can be chosen, and GV = I. Then Eg. (G-12)

can be rewritten

. T -1 T
dr, = [A - R_R = [ - -
By [ o By B - I TIRy Ry - I AR, (G-15)
if }n is large enough, then
1 T, -1 T
dRrR — [I + R I - R, R -
) - ( _N] { Ry ] A R” (G-16)
Ncte that R RT is a itive defini it
Ncte positive definite quantity so
4R < J; SA R (G=17)
N TN
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APPENDIX H

IMPLEMENTATION ISSUES

Chapter 3 exhibits specific controller designs which include ug

tc Zour listlnct components.
(1) Regulator galn matrix
"2 Asymptotic opserver
(3) Irput transform
(4) Output transform
This appendix deals with the designs of Chapter 3 at the component
level. This intent is to discuss the component design algorithms, and
to exhibit the algorithm input data.
H.% regzulatoy Gains
Regulators are designed for two systems [Al 81] and (A, Bszl.
£
Given a dynamical matrix A, an input distribution matrix B, and a quad-
ratic exgression for cost, the optimal feedback gain matrix is
-1.7T -
K = R_BP (H-1)
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and where Rl and R2 are state-deviation and control-effort weighting

matrices in the cost function

(-4
T T
J = /§1R151 + u'Ru dt (H-3)

(6)
In this thesis, Eq. (H-2) is solved using Potter's noniterative method,

which constructs the matrix P from the eigenvectors of 2

-1 T
A BR2 B

2 = (H°4)

This method is efficient, but has numerical difficulties when R1 and R2

choices lead to multiplicity of eigenvalues in 3Z.

For the [A1B1] design, the weighting matrices R1 and R_ are given

2
in Table H-1 (note, R1 = Q and R2 = R). The cost matrix and poles of

[A + BK] are given in Chapter 3. The gain matrix is given in Table H-2.

For the design [Al, B1T2], the weighting matrices Rl and R2

are given in Table H-3. The weighting matrix on state deviations Rl, is
the same as above (R1 = 6). The weighting matrix for control effort is

given by

T
R2 = T2RT2 (H-5)

In this way, both designs have the same cost functions. The cost matrix
P for the second design is exhibited in Table H-4, and the gains K are
given in Table H-5.
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Table H-1. State and control weightings for regulator [Al, Bll.

POTTER INPUT DATA TIME: 8:50:03.5 DATE: 07/08/80 (80/190)

———— +
+ + + + + + + + + + + + +

1 # CONTROL GAINS

2 # X1 TRANS MODEL X1 KWEIGHTS

3 /GET=S206

4 /PUT=G411 X1 GAINS NO TRANS

5 /STATES ARE WEIGHTED

6 Q 1 1 1.666666666E+00 2 2 1.666666666E+00 3 3 1.666666666E+00
7 Q % & 1.000000000E+00

8 Q 5 5 0.000000000E+00

% q 6 & 1.000000000E+00 7 7 1.000000000E+00 & 8 1.000000000E+00
10 Q 99 1.666666666E+00 1010 1.666666666E+00 1111 1.666666666E+00
11 @ 1212 1.666666666E+00 1313 1.666666666E+00 1414 1.666666666E+00
12 Q 1515 1.000000000E+01

13 @ 1616 0.000000000E+00 1717 1.000000000E+00 1818 1.000000000E+00
14 Q 1919 1.000000000E+00

15 @ 2020 1.666666666E+00

16 Q 2121 1.666666666E+00 2222 1.000000000E+01

17 R 11 1.000000000E~07 2 2 1.000000000E-07 3 3 1.000000000€-07
18 R % 4 1.000000000E-07 5 5 1.000000000E-07 6 6 1.000000000E-07
19 R 7 7 1.000000000E-07 8 8 1.000000000E-07 9 9 1.0000000000-07
20 R 1010 1.000000000E-07 1111 1.000000000E-07 1212 1.000000000E-07
21 R 1313 1.000000000E-07 1414 1.000000000E-08 1515 1.000000000E-08
2 R 1616 1.000000000E-08

23 /COMPUTE

24 /END

+ + +

END OF INPUT DATA

+
+
4
4
4
+*
4
4
+
+

+

Notes: (1) States 1 to 1l correspond to displacements of modes 4,
5, 6, 7, 10, 11, 12, 13, 20, 21, and 22. States 12 to

22 correspond to modal displacements.

() R, = Q, R, = R

(3) Only nonzero elements are given.
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Note:

OPTIMAL GAIN MATRIX K

1
-3.6570035070-01
2.883143772D+02
2.809792790D+02
2.875720175D+02
6.9768315000+00
1.2276586360-01
6.013206393D0+00
1.763895%4¢D-02
=5.9992263230+00
9.2549469570+00
~-1.1037769700-01
-6.185691021D0+00
3.5234120890+00
-2.2941626740+01
-2.7964359910+00
~1.281467273D404

6
-1.6879241770+02
~3.447732441D+01
=-1.1126344780+01
~3.403806376D+01

%.7274979550+00
2.9532934840+01
1.3301852620-01
2.915644933D+01
8.0289287090-01
-5.532717206D+01
2.6667187920+01
-5.3629561750+01
2.6721527120+01
-1.64917006500+401
-1.2945431410+01
7.622315015D0+02

11
-6.1619686430+01
7.979301160D+401
8.6653708900+01
8.4453738010+01
-4.730046176D+01
3.667681221D+01
2.927736967D+01
3.247012376D+01
2.9801293180+01
5.629034370D0+03
5.649049692D+03
5.638763226D+03
5.6509438620+03
-2.8390277250+402
-1.8927504250+02
~5.3677733550+03

2
-3.9558479710-03
1.186799060D+02
9.9559983070+01
=1.115134170D+02
-1.084885639D+02
-1.168129343D+02
~8.214028138D+01
1.120651661D+02
9.6896262170+01
-5.522031324D+01
3.0341709190+402
5.520916130D+01
=-3.0342441940402
-9.045190145D+03
9.0577214740+03
3.4758462220+01

7
-2.9081759370-03
1.927201864D+03
9.2194061710+02
-1.9329850660+03
~9.6688109920+02
-1.6290016670+03
-5.599260433D+02
1.6062318900+03
6.3023932160+02
-8.340771505D+402
1.3561481560+403
8.339276298D+02
-1.3562945260+03
-4.5292653520+04
4.5949383770+04
1.0523998910+03

12
-3.6545849840-01
2.968618168D+02
2.8951941030+02
2.9614687330+02
7.0123260370+00
1.3922167650-01
6.0277485850+00
1.0209094210-03
~6.0139273900+00
9.2384761790+00
~1.0301607070-01
-6.16321373404+00
3.5218103750+00
-2.1865786000+01
-2.6827083840+00
-1.3195619550404

modal velocities.

3
-2.158158961D-02
-1.2688894120+02

1.362767450D+02
1.22642768280+02
=-5.0023025450+02
1.079525473D+02
-1.3848491600+02
=1.0263463530+02
1.3111232600402
-3.6065365950+02
-6.7996375260+01
3.605536264D+02
6.7917302260+C1
~8.940401276D+03
=8.9697750750+03
3.863829378D+01

8
6.6912730680-~03
~3.752910675D+03
2.5482126420+03
3.7831342350+03
~1.0216874750+03
%.2314651170+03
-2.9366489490+403
~4.253692562D+03
2.9675641390+03
=1.594340659D+04
=1.3983355140+03
1.594369985D+04
1.3991213730+403
8.909121261D+04
8.9623647770+04
~4.1807570990+02

13
-3.9827760290-03
1.244309970D+02
1.0268447930+02
~1.165767806D+02
=1.1245697250+02
-~1.2208451330+02
-8.3312053020+01
1.1688168990+02
9.9481691820+01
-5.768413740D+01
3.0896376190+02
5.7672598200+01
~3.0897144950+02
-1.0024598580+04
1.0038753160+04
3.806302271D+01

291

4
2.280209186D-02
8.578248218D+03

~8.836682430D+03

~8.448886577D+03
1.165846895D+04

-8.394287134D+03
8.8707105820+03
8.353827114D+03

=-8.81461039680+03
2.901333925D0+404
4.276403364D+03

-2.901376099D+04

-4.2768460090+03

=-5.2040489530+04

=5.176905346D+04

-2.417720915D+03

9
5.932822071D-02
5.382622980D+03
5.180940663D+03

=5.2236204690+03
-5.2099796100+03
-5.4284708150+03
~5.2114690280+03
5.4269742930+03
5.218611721D+03
-1.7008680150+03
1.9031239690+04
1.701647253D+03
-1.903031976D+04
7.7003196290+04
-9.0252759330+04
~-3.4332829550+03

14
-2.1765176770~02
-1.274372462D+402

1.3938005020+02
1.225480271D+02
-5.3887017730+02
1.062229832D+02
=1.413061016D+02
=~1.003862915D0+02
1.3321324210+02
-3.5259358440+02
=6.9105340150+01
3.52649311230+02
6.9026005100+01
=9.9618069590+03
=9.9970094930+03
4.2243289550+01

Table H-2. Optimal gain matrix for [AlBl] regulator (sheet 1 of 2).

5
2.2199726510~10
8.6615395600-10
2.269179546D-09

-7.696019324D-10
~2.246570167D-09
-8.561553223D-10
~1.633964152D-09
7.7928967970-10
1.632632834D-09
~1.232435459D0~09
-2.020920773D-10
1.412767915D-09
1.688440643D-10
4.4868873898D-10
-2.22494714€D-10
-1.1534238410-09

10
1.445832971D-01
=7.364673445D+03
7.7051483450+03
7.7847397270+03
-7.8339212530+03
7.727163282D0+03
-7.665977765D+03
~7.721556110D0+03
7.6570342350+03
~2.773832141D+04
=3.0973438490+03
2.774109261D+04
3.1004696750+03
1.080267102D+05
1.0005481640+405
-9.4283967850+03

15
4.1760378780-0%
-1.138080488D+03
1.031236660D+03
1.135154043D+03
~1.0015178500+03
1.1639833470+03
-1.063571574D+03
=1.1644424490+03
1.064210143D+03
~4.1921173460+03
-5.297059090D+02
%.1920883180+03
5.2967659190+02
9.6183581620+03
9.5989479060D+03
7.0373952900+01

Columns 1 to 11 correspond to displacements of modes 4, 5, 6, 7,

10, 11, 12, 13, 20, 21, and 22. Columns 12 to 22 correspond to

.



VOO MPLUND

Note:

16
6.2973687684D~11
3.354201401D-13

~3.3747968250-11
1.262262265D-11
2.950106707D~11
-3.486275563D-12
2.417498569D0~-11
-1.838421681D0-11
-2.449984318D~11
4.152495125D0~-11
-8.0947350200-12
4.4957535470-12
-6.4583817930-12
~5.233974673D-11
1.142063992D0-11
-2.1755857850-13

21
1.320816023D-03
-5.633483467D+02
1.488107621D+03
5.626234375D+02
=1.489568857D+03
2.8%91773456D+02
-1.188741681D+03
-2.891563818D+02
1.1887135690+03
-4,896263697D+02
-6.0775547350+02
4.8962618250+02
6.0775401780+02
2.599932068D+02
~1.784768678D+01
1.591469342D+01

17
=1.472522854D+01
-9.007058898D+00
=7.793227373D+00
~9.012070295D+00
-8.2087003750+00

7.7020516000+00
6.412147842D0+00
7.7064333230+00
6.389365679D+00
1.217058820D+03
1.221221951D+03
1.217050894D+03
1.221240321D+03
~3.461505216D-02
6.456898264D-02
2.4368483200+01

22
4.145083841D0+03
4.1963900680+02

~1.4002622190+02
4.196385904D+02
~1.399483377D+02
=7.196819139D0+02
=1.0566515400+01
-7.196805083D+02
~1.0560401290+01
1.539187422D+03
-4.5644298123D+02
1.5391906890+03
-4.544284967D+02
6.2866297360-02
%.0489045070-02
~9.6958082970+00

modal velocities.

P e mcwem s e mem s - -

18
~1.414909512D0-04
~2.6681801180+02
-2.975191236D+02

2.673019299D+02
2.980947716D+02
2.799755652D+02
3.1070313120+02
~2.798406154D+02
-3.1112158%6D+02
1.325494444D+02
-1.100599023D0+03
-1.325396688D+02
1.100608912D+03
=-4.,996978673D+03
4.983512525D+03
=-1.6274563100401

292

19
-8.419811350D0-05
~2.466301161D+02

2.193555851D+02
2.459700935D0+02
-2.368454100D+402
2.586878752D+02
=-2.3176034630+02
~2.586354027D+02
2.314088548D+02
~9.115772382D+02
-1.0842886790+02
9.1156517580+02
1.084169127D+02
4.7321991990+03
4.744751258D+03
1.179192765D+01

Table H-2. Optimal gain matrix for [A1B1] regulator (sheet 2 of 2).

20
5.3050495530-04
1.4921705110+4+03
5.683879109D0+02

~1.4924320650+03
-5.6844758410+02
-1.1926046370+03
-2.939724484D+02
1.19256850430+03
2.940297782D+02
-6.099290345D+02
5.040151064D+02
6.0992694790+02
-5.040157006D+02
-1.0691506840+02
-2.3722117770+02
6.564355682D+00

Columns 1 to 11 correspond to displacements of modes 4, 5, 6, 7,

10, 11, 12, 13, 20, 21, and 22. Columns 12 to 22 correspond to

lt‘
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Table H-3. State and control weightings for regulator [Al, Bszl.

POTTER INPUT DATA TIME: 17:50:11.6 DATE: 07/07/80 (80/189)
———— + + + L R ittt T e e e ]

+*
+*

+ +

1 = CONTROL GAINS

2 % X1 TRANS MODEL X1 WEIGHTS

3 /GET=S306

4 /PUT=G409 X1 GAINS

S /STATES ARE WEIGHTED

6 Q 11 1.666666666E400 2 2 1.666666666E+00 3 3 1.666666666E+00
7 @ 4 4 1.000000000E+00

8 Q 55 0.000000000E-05

? Q 6 6 1.0C0000000E400 7 7 1.000000000E+00 8 & 1.000000000E+00
10 Q 9 9 1.666666666E+00 1010 1.666666666E+00 1111 1.666666666E+00
11 Q 1212  1.4666666666E+00 1313 1.666666666E+00 1414 1.666666666E+00
12 Q 1515 1.000000000E+02

13 Q 1616 0.0000000C0E-05 1717 1.000000000E+00 1818 1.000000000E+00
14 Q 1919 1.000000000E+00
15 Q 2020 1.666666666E+00

16 Q 2121 1.666666666E+00 2222 1.666666666E+01
17 R 11 1.8000000005-09 1 3 -9.000000000E-1¢ 2 3 7.00C0CCC00E-10
18 R 1 5 -6.000000000E-10 1 9 ~3.000000000E-10 2 2 1.120000000E-08
19 R 2 4 6.80C000000E-09 2 6 6.900000000E~Q9 2 7 3.700000C00E-09
20 R 2 8 -2.100000000E-09 2 9 1.000000000E-10 210 4.9C000CCCOE-09
21 R 3 1 -9.000000000E-10 3 2 7.0060000000E-10 3 3 9.50600C000E-09
22 R 3 4 -2.200000000E-09 3 5 5.000000000E-10 3 6 -3.300000000E-09
23 R 3 7 -2.400000000E-09 3 8 5.800000000€E-09 3 9 5.00020Q000E-10
2% R 310 6.800000000E-09 & 2 6.800000000E~09 & 3 -2.200000000E~09
25 R % & 6.410000000E-03 & 6 -3.350000000E-08 & 7 3.640000000E~08
26 R 4 8 6.890000000E-08 410 2.140000000E-08 5 1 -6.000000000E-10
27 R 5 3 5.000000000E-10 5 5 1.450000000E-08 5 9 1.560000000E-09
28 R 610 -1.450000000E-08 8 4 6.890000000E-08 6 2 6.50000C000E-09
29 R 6 3 -3.300000000E-09 6 4 -3.350000000E-08 6 6 7.440000000E-08
30 R 6 7 -1.880000000E-08 6 & -7.390000000E-08 7 2 3.700000000E-09
31 R 7 3 -2.6400000000E-09 7 8 3.860000000E-08 7 6 -1.880C00000E-08
32 R 7 7 2.09C000000E-08 710 1.150000000E-08 8 2 -2.1000G0000E-09
33 R 8 3 5.800000000E-09 7 4 3.640000000E-08 8 6 -7.35002CJ00E~-08
3% R 8 7 3.360000C00E-08 8 8 1.082000000E-07 1010 3.570000000E-08
35 R 810 3.8000000C0E-08 9 1 -3.000000000E-10 9 2 1.000000000E-10
36 R 9 3 5.000000000E-10 9 5 1.500000000E-09 9 9 5.600000000E-09
37 R 16 2 4.900000000E-09 10 3 6.8000600000E-09 10 4 2.140000000E-08
38 R 10 6 -1.450000000E-068 10 8 3.800000000E-08 10 7 1.190000000E-08
39 /COMPUTE
40 /END

¢+ + + + + +

demmapmwmnag

+*
+
4
+
+
4

——o=d + + + +

END OF INFUT DATA

Notes: (1) States 1 to 11 correspond to displacements
of modes 4, 5, 6, 7, 10, 11, 12, 13, 20, 21
and 22. States 12 to 22 correspond to the
modal velocities.

(2) R, = Q@ R, = R

(3) Only nonzero elements are given.
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Table H-4.

~
VPNV HF UMM

et o b et et et o et
VRNV P UWNM

[NE AN
nNeo

PO et 1t Gt e At Pt ek ot fed Bt
QOUWONTCWVMPDUNMOOP NOTWVL WM

~nN
~N -

Note:

SOLUTION MATRIX "P" OF ALGEERAIC RICCATI EQUATION

1
1.7296086720+00
-2.283419111D-03
-8.122002672D-05
~8.435001156D-03
0.0
-1.517988454D-02
~1.948649571D-03
=-1.9237908270-03
2.836928115D-02
3.0824000040-02
6.0118051240~02
6.4132092460-02
-2.5063829570~03
~-8.139395¢820-05
-2.9775836070-~04
0.0
3.256759667D-04
~-8.5884742650-C5
1.905452085D-05
~3.084124%210-05
=4.6939411470-05
-3.2278626480-05

13
~1.517988454D-02
2.9521546600-03
7.0588859970-03
~7.316481434D-02
6.297914781D0-13
7.853901086D+01
=-2.0634949920-02
~7.7537006170-03
6.9800627480-0%
5.621045203D-03
-3.102351944D-01
~1.623379703D-02
3.4802118110-03
7.8743060250-03
1.1079601550-03
0.0
3.424617326D-04
=1.41344061£D~04
2.9220185510-04
1.007655584D-06
=7.0634625350-05
-5.6847944390-03

States 1 to

2
-2.2834191110-03
1.949722975D0+00
-1.9251041330-02
1.992956508D+00
0.0
2.9521546600-03
7.6813520010-01
3.4861824750-01
-3.1937485200-01
8.1060402010-01
1.6249744650-03
-2.533881968D-03
3.0726543550-01
-2.155789768D-02
%.70670$5810-03
0.0
-1.4435736420-05
-3.155%733300-03
-5.8166248200-03
9.892192132D-04¢
-1.2503749710-03
-5.789578033D-07

7
-1.948649571D-03
7.681352001D-01
5.557244751D-02
=1.983201103D+00
6.797064797D-13
~2.063494592D-02
3.9798632%4D+01
-1.076440683D+00
3.359460933D+00
1.244294610D+00
2.37272637923-02
-3.0182794150-03
9.059242563D0-01
6.0560270070-02
2.5992251380-01
0.0
1.546930817D-04%
~5.5891671140-03
~9.924076984D-03
%.8970509010-02
-2.7938008300-02
~1.8751818150-05

11 are x modal displacements.

3
-8.122002672D-05
-1.9251041330-02

1.8626659910+00
-1.861699953D+00
0.0
7.058885997D-03
5.557244751D-~02
-8.0669105700-01
2.1223856730-01
2.0386858770-01
1.6417825140-02
-6.7529732180-05
-2.25488654%40-02
2.077705935D-01
-8.774412284D-03
0.0
-4.537201739D-05
2.635213213D-05
9.792238746D-03
1.488622307D-04
5.2703085150-04
~1.568874512D-06

8
~1.9237908270-03
3.4861824790~01
-8.0669105700-01
-2.806106643D+01
3.165331688D-13
-7.7537006170-03
-1.076440683D+00
5.6656433350+01
-2.4299500400-01
2.686725969D+00
-6.321523687D-02
-2.4530596050-03
%.2522221310-01
=9.2276218110-01
2.199524006D+00
0.0
-3.679914608D-05
-1.4459833570-02
~7.3842566570-02
~6.921876360D-03
~2.66%9043937D-02
~8.9544096320-05

are corresponding modal velocities.
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4
-8.435001156D-03
1.992956908D+00
-1.8616995530+00
3.4251454570+02
0.0
~7.316481434D~-02
~1.983201103D0+00
-2.806106643D+01
~5.128247827D+00
-3.938384303D+00
-1.837679%650~01
~1.11164175570~02
2.3643950010+00
-2.127683872D+00
~7.831196203D0-02
0.0
-4.633277383D0-04
~6.52741C455D-02
~5.7495917638D-01
-8.859750308D0-03
=1.908842%44D-02
5.713360211D-06

)
2.836928115D-02
-3.1937485200-01
2.122385673D-01
~5.128247827D+00
~3.6796694560-12
6.9800627680-04
3.3594609330+00
-2.4299500400-01
6.2459463650402
-5.5782£89430+01
-9.2672664200-03
2.994383573D-02
-3.7602915030-01
2.2813093800-01
5.3554703210-01
0.0
3.2368043090-04
-6.396816964D~01
1.050262518D-01
~1.5054883470-02
6.7328793190-03
-3.6577392360-04

Cost matrix for [Al, TZBl] Regulator (sheet 1 of 3).

0000
[-X-N-N-X-1

6.297914781D-13
6.7970647970-13
3.165331685D-13
~3.679669456D-12
1.159305188D-12
1.228132750D-12
-5.279956753D-18
2.134013696D-14
-3.208606900D-15
3.1810376990-14
0.¢
-9.5194608550-15
7.885000224D-15
8.057475176D-16
1.849725045D-14
3.4207722550-14
1.3702341370-14

10
3.082400004D-02
8.1060602010-01
2.038885877D0-01

-3.938384303D+00
1.1593051880-12
5.621045203D0-03
1.244294610D+00
2.6867259690+00

-5.578188945D+01
6.95428019C0+02
2.981406126D-01
3.095323770D0-02
9.4882291520-01
2.1497339340-01
1.0242774250+00
0.0
1.477253534D-03
3.270880354D-01
1.797797136D-01
1.2953323660~02

-1.3335614670-02
1.4011705390-03

States 12 to 22




Table H-4. Cost matrix for [Al, Tzal] regulator (sheet 2 of 3).

VENOCUVE&H W~

Note:

11
6.011865124D-02
1.6245744550-03
1.6417525140-02

-1.8376799650-01
1.8281327500-12
-3.102351944%0-01
2.3727263750-02
-6.321523687D-02
-9.267266%200-03
2.9814€6126D-01
1.32874%5€EE500+04
6.2484569700-02
1.837292308D-03
1.804970065D-02
-3.457110956D-04
0.0
2.068738819iD-01
3.807071306D-04
2.7569956C3D-03
7.76934%327D-0%
~3.103562414D-03
-6.780141734D-05

16
0.0
0.0
0.0
Q.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7.6

39465294D-16
2.671391683D-16
3.0619755810~16
4.716058684D-16
7.6696956010-16
6.2766211200-16

States 1 to 11 are x

12
6.413209246D0-02
-2.5338915630-03
~6.75297221¢3-05
~1.1114175570-02
-5.2799567530-18
~-1.623379703D-02
~-3.018279415D0-03
-2.4530595050-03
2.994383%730-02
3.0953237700-02
6.242456970D-02
6.655706997D-02
-3.001243091D-03
-8.035993467D-05
-3.323399484D-04
0.0
3.262983791D-04
-9.0188400770-05
2.6055721633-05
-3.2059%84643D-05
-%.555617704D-05
~-3.2225264560-05

17
3.25675%6670-0%
~1.64643573642D-05
~4.537201735D-05
~%.633277383D-04
-9.519%60866D-15
3.424617326D-04
1.5469308170-04%
~3.6799146060-05
3.2368043050-04
1.4772535340-03
2.087338192D-01
3.2629837910-04
~1.45293708%0-05
-4.5063736740-05
~3.12874983.0~05
7.63946529<D-16
6.052499283D0-02
-2.1870159470-05
1.1576987370-05
5.2451235420-07
~1.364738173D-06
-6.2882505130-05

1

13
~2.5063829470-03
3.07065%3350-C1
-2.285458855%50-02
2.354395301D+00
2.134013696D-14
3,4802118110-03
9.0592425630-01
%.252222131D-01
-3.7602919030-01
9.488229152D0-01
1.83729230e0-03
~3.001243091D-03
3.5314003010-01
~-2.4693723520~02
9.8265316320-03
0.0
-1.,4529372890-05
~3.21838188050-03
-6.7277610020-03
1.144€676750-03
-1.4351471%30-03
-5.88253585%0-07

18
-8.9884742650-05
-3.1559733300-03

2.635213213D-05
-6 .527410455D-02
7.889000224D-15
=1.4134406180D-04
-5.589167114D0-03
~1.445983357D-02
-6.394816964D-01
3.2705303540-01
3.607071306D-0%
-9.0188400770-05
-3.21581£2€40-03
1.18871463340-0%
-7.0412054860-03
2.6713916830-~16
-2.1870159470-05
2.3818087950-02
-1.759000082D-03
1.3192129900-03
-7.402951597D-04%
3.9361635630-07

modal displacements.

are corresponding modal velocities.
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14
-8.1393550220-05
-2.1557897883-02

2.077705985D0-01
-2.1276628720+00
-3.2086069200-15
7.8743060250-03
6.0560270070-02
-9.2276218110-01
2.2813073800-01
2.149733934D-01
1.8049700650-02
-8.035994467D-05
-2.469372352D-02
2.2686186252D0-01
~1.3959454320-02
0.0
-%.5068738760-05
1.188716334D-04%
1.05335945%D0-02
1.751856665D-04
6.1252436600~04
-1.3692809050-06

19
1.905452C88D-05
-5.81662648200-03
9.7902387%6D0-03
-5.74559179€0-01
8.057475176D-16
2.922018551D-04
-9.9040765840-03
~7.354255657D-02
1.0502625180-01
1.797797188D-01
2.75699%6030-03
2.605572163D-05
-6.787791C02D-03
1.053358%550-¢2
-4.1652267600-02
3.061975581D-16
1.1576%8737D-05
~1.7590000820-03
£.643551175D-02
-1.148709543D-04
-4.5837511440-04
-1.2303746640-06

15
-2.9775535C7D-04%
%.7037055510-03
-8.774412084D-03
-7.831195203D-02
3.1810375992-14
1.107960155D0-03
2.5992251380-01
2.1995240C6D+00
5.3554703210-01
1.0242774290+00
-3.457110956D-04%
-3.3233954840-04
9.8265316320-03
~1.3959454320-02
7.4580653950-01
0.0
-3.1287498380-05
-7.0412054%56D-03
-4.1852067000-02
~2.068837974D0-04
-2.37779%5430-03
-3.7173208230-06

20
~3.084124421D-05
9.892192132D-04
1.488622307D-0%
-8.859750308D0-03
1.849725045D-14
1.007655584D-06
4.8970509010-02
-6.92187636C0-03
-1,508488347D-02
1.295332366D-02
7.7694443270-04
=3.2C99623456D-05
1.14%406767ED-C3
1.751855665D-04
-2.C6353799%D-0%
4.716058624D-16
5.2451235%42D0-07
1.319212650D0-33
=1.14£709543D0-04
2.783957910D-02
-2.176663203D0-03
=1.2914465630-06

States 12 to 22




- -

Table H-4. Cost matrix for [Al, TZBl] regulator (sheet 3 of 3).

LI JEVIR R R P

b bt bt et et et et et et
VONCVHEUNFO

r

21
22

Note:

21
~4.693941147D-05
~-1.250374971D-03

5.270308515D-04
-1.905842954D0-02
3.420772259D-14
-7.063%62535D0-05
-2.793800830D~-02
-2.6690439370-02
6.7328793190-03
-1.338561467D0-02
-3.1085626414D~03
-4.55%617704D-05
-1.4351471980-03
6.1292436600-04
-2.37779944%0D0-03
7.665699601D-16
~1.364738173D-06
-7.402951597D0-04
~4.583751144D-0%
-2.176663203D-03
3.136656605D-02
6.532726911D-06

States 1 to 11 are x

corresponding modal velocities.

22
~3.2278626480~-05
-5.7896780330-07
-1.568874512D~06

5.713360211D-06
1.370234137D-14
~5.68479443%D0-03
-1.8751818150-05
-8.554409632D~05
~3.65773923460-04
1.401170539D-03
-6.780141734D-05
~-3.2225264655D-05
-5.88853585450-07
~1.38%2809050-06
~-3.717320823D-06
6.2786211200-16
-6.2882505130-05
3.936163563D-07
-1.2303746640-06
-1.291446563D-06
6.5327269110-06
2.7927307860~01

1

P A

modal displacements.
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Table H-5.

OPTIMAL GAIN MATRIX K

1
~3.649506084D+04%
1.021778825D+0%
~2.008753305D+04
2.0598044750+04
~-6.193664291D+02
9.555607453D0+03
-6.4138725650+04
1.948377263D+04
~2.603227973D+02
~5.7691118770+03

6
9.254892957D+03
-3.032821497D+03
5.022760536D+03
-5.6332593890+03
1.6C4382475D0+02
-2.712942191D+03
1.7685514670+04
~5.5191765850+03
6.6471615847D+02
1.7554371330+03

11
-3.486414174D+04
9.549962183D+03
-2.03844609580+04
2.121703072D+04
-2.2055986890+04
9.066303759D+03
-6.444696675D+06
1.855335416D+04
5.795667505D+03
-4.994956544D+03

16
~-1.581879684D-12
-1.200811315D-10
-1.03806%707D-11

8.7375339520-11
-8.420393975D-11
4.663430979D-11
-3.70523%602D-10
9.4124841770-11
-3.675832743D-11
-1.433427524D~-10

21
1.9263223840+02
~5.774933796D+03
3.180411873D+02
7.662546771D+02
-1.6606885580+01
-8.748308685D+02
1.0226991900+03
-1.5910257620+03
8.80997514590+01
-2.2863838190+03

2
~1.137696446D+02
-9.1317817790+03
-2.167183764D+03
~1.858472795D+03

2.974358171D+01
3.422425421D+03
-4.744112815D0+03
6.206147892D+03
3.5034528210+02
=-2.49425%6590+03

7
-3.000883201D+03
-2.4847132%40+04
-9.36258634400+03
~5.4507810730+03

3.0273530820+01
1.245659713D+04
~2.62%884295D0+04
1.5103602020+04
1.070825063D+03
-7.257947412D+03

12
-3.787301534D+04
1.061660178D+04
-2.0842902550+04
2.1378615110+04
-6.415%3424640+02
9.912504402D+403
-6.655566881D+04
2.02120903CD+04
-2.7110585110+02
~5.9842754C6C+03

17
1.9085707%0D+01
1.847453789D+01

-2.6031560230+02
5.722283161D+02
-6.232524729D+03
3.5615875360+01
-1.1579535200+03
8.1881104530+01
1.754744793D+03
1.677000607D+01

22
-1.2751506910+03
1.342416693D0+03
~2.247828749D+03
1.707205645D+03
-2.349696%4640+03
1.2476959520+03
-6.5807572520+03
2.531008716D+03
-2.7284502820+04
-7.735829181D+02

3
1.945603637D+02
-8.889883678D+03
~1.897525455D0+03
~1.0913307950+0¢%
-1.349810824D+01
~9.0423161900+03
4.055231811D+04
-1.717167656D+04
2.440533167D+02
8.386608521D+03

8
-9.5250050850+02
3.1565000320+04
5.8826253160+03
1.22674%618D+05
1.139315515D+02
9.316256066D+04
-4,740794715D+05
1.750157337D+05
-7.280326953D+02
-8.236626776D+04

13
~-8.779534809D+01
-1.058680757D+04
-2.4799983460+03
-2.0201797300+03

3.476841623D0+01
3.999845636D+03
-5.994553708D+03
7.3361852160+03
4.055479995D+02
-2.668642647D+03

18
-3.7247948120+02
~3.876644109D0+03
-8.604072525D+02
-1.7073704020+03

3.7972529080+00
=1.769450264D+03
1.4758707530+03
1.180756672D+03
1.2516234660402
-3.9075626310+02

4
~4.7543600320+03
=1.36362270CD+06
3.531778157D+03
-7.357218419D+04
2.9155094564D0+02
-4.5427517930+02
2.0007115270+05
-9.3003%54327D+03
5.75921225%D+02
9.917996168D+03

9
-3.3169544030+03
1.2125466531D+05
1.683845514D+04%
7.223095320D+0¢
-3.3543762380402
5.707024651D+04
-1.21838375£0+05
-1.573062177D0+C4%
~3.8451953763D+03
3.73563180550+03

14
2.158983104D+02
-9.825008326D+03
-2.089493438D+03
-1.2254893530+04
-1.5331232080+01
-1.011190774D+04%
4.552730777D+0%
-1.9185714510+0%
2.656547428D402
9.3672846150+03

19
2.4130243330+01
2.617278643D+03

-2.9128992980+01
7.310054770D+03
2.1431029720+00
4.8782361350+03

~2.620684554D+04%
8.8584226310+03

-4.822269335D+401

~4.3337264674D403

Gain matrix for [Al' T281] regulator.

5
~1.7E56727330-10
-6.673595542D~09
-2.553631195D-10

5.992687621D~10
8.503095407D-10
3.147614402D-10
~-4.6527879140-09
3.401616274D0-10
~1.4776847060-09
~%4.413552475D-09

10
~2.893556534D+04
~7.176613753D+0%
=~3.54%%4C0956D+04

9.03505688700+04
-4.1431526450+02
6.071758707D+04
-4.3553621520+05
1.801533770D+05
2.706109163D+03
~8.097580095D+ 0%

15
2.5806886010+02
~2.203742580D+03
3.761309141D+02
1.8547259256C+04
-2.7497899680-01
1.006891687D+04
-5.938545936D+04
1.774255054D+0¢
2.6%07655620+01
-8.472920755D+03

20
5.9412500930+00
2.033414569D0+03

-8.364532533D+00
-2.993334126D+03
3.2790638920+C0
-1.707051054D+02
5.431694753D+03
-2.8338419010+03
~3.605521356D+01
2.2773726320+02

Note: Columns 1 to 11 correspond to

displacements of modes 4, 5, 6,

7, 10, 11, 12, 13

22.

Columns 12 to 22 correspond

20, 21, and

to modal velocities.
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H.2 Observer Gains

Three observer designs are discussed in Section 3.3. All are
asymptotic observers and, when evaluated against their own design model,
they exhibit similar error dynamics. They are different, however, in J

dimension and measurement processing.

Observer 1 is based on [Al, Cl] and has the form

X, = Ax +Bu+Gly - Cxl (H-6)

The elements of the gain matrix G are chosen using the alpha-shift
technique (see Section 3.2), and duality is exploited to allow the use
of Potter's noniterative method. The relative weightings between model

dynamics and measurement incorporation are governed by matrices V1 and

V2 (see Table H-6), and alpha equals six.

Observer 2 is based on [Al,A , C ,CZ]. The gain matrix G,

2 1
which is 38x38, is chosen using the same methodology as above. Weight-

ing matrices V. and V2 are given in Table H~7. The poles of

1

are given in Chapter 3. Again, alpha equals six.

Observer 3 is based on [Al, T C2] and has the form

3

x, = Alx1 + 315 + GT3[y - Clxll

The elements of the 22x4 gain matrix G are chosen using the Potter

algorithm., V1 and V2 are given in Table H-8, and alpha equals six.
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Table H-6.

OBSERVER INPUT DATA

[ Q—— fm———

TIME: 16:29:25.3

+

* OBSERVER FOR X1/X2

/GET=5206
/PUT=Q412

0BSR X1

/SIGMA= 6.000000000E+00
/STATES ARE

112
4 4
77
1010
1313
1616
1519
2222
11
44
773
1010
1313
1616
1919
2222
2525
2828
3131
3434
3737
/COMPUTE
/END

VDWW ODDVVDOUVOBDUVLVOLOLLDOODLOLOO

B LT S L ST S U S S Ny 1 Ay (P S G ——Y

WEIGHTED

1.000000000E-05
1.00000C000E~04
1.060000000E-03
1.000000000E~-02
1.000000000E-04
1.000000000E-01
1.000000000E-01
1.000000000E+01
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E~-08
1.000000000E~-08
1.000000000E-08
1.000000000E-08
1.60000080Q0E-08
1.000000000E-08
1.000600000E-08
1.000000000E-08
1.0G0000000E-08

END OF INPUT DATA

Note:

v

+

22
55
8 8
1111
1414
1717
2020

22

55

33
1111
1416
1717
2020
2323
2626
2929
3232
3535
3838

+ L L L T R et ST LT T PRSP SRy

1.000000000E-05
1.000000000E~04
1.000000000E-03
1.0000000J00E~01
1.000000000E-04
1.000000000E-01
1.000000000E+00

1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E~08
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000€-08
1.000000000E-08
1.000000000E-08
1.006000000E-08
1.000008000E-08
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1212
1515
1818
2121

33
6 6
99
1212
1515
1818
2121
2424
2727
3030
3333
3636

Observer 1 weighting matrices.

DATE: 07/07/80

1.000000000E-05
6.000000000E-03
1.000000000E-02
1.000000000E-05
1.000000000E~04
1.000000000E~01
1.000000000E+00

1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.000000000E-08
1.0600000000E-08
1.000000000E-08
1.0000C0000E~08
1.000000000E-03
1.000000000E-08
1.000000000E-08
1.000000000E-08

'1




Table H-7. Observer 2 weighting matrices.

OBSERVER INPUT DATA TIME: 17:54:41.2 DATE: 07/07/80 (80/189)

T T e T o S R e bl T TR P SR S T T 3

VP NGUN P N

LI VIWRN DR MM RN E S et
WRNHFOIOONGCVLUNHOODONTUMLAUNDHO

* OBSERVER FOR X1/X2

/GET=5202
/PUT=5604
/SIGMA=
/STATES ARE
11
4 64
77
1010
1313
1616
1919
2222
2525
2aza
3131
3434
3737
11
4 4
77
1010
1313
1616
1919
2222
2525
282
3131
3434
31737
/COMPUTE
/END

VWAV ODDVDOVAVOVDAUAOLODLOOODLO0LDLDOLO

B el T S e T S T R e Ly e otk it 4

OBSR X1-X2

6.000000000E+00

WEIGHTED

1.0000000C0E-05
3.000000000E-03
1.000000000E~03
8.000000000E-02
1.0G0000000E-02
1.0006000C0E-02
2.000C0000CE-01
1.0000000C00E-05
1.0000000003E-01
3.0000000C00E-01
1.000000000E~01
9.000000000E-01
1.000003000E+01
1.000000Q00CE-0Q7
1.000000000E-07
1.000000Q000E-07
1.000000000E-07
1.000CQQ00QE-Q7
1 00000GQC0E-07
1.00000000C0E~Q7
1.00000000CE-07
1.000000000E-07
1.0000000GCE~07
1.000C000C0E-07
1.000000000E-07
1.000000000E-07

END OF INPUT DATA

Note: V

1

22
55
8 8
1111
1414
1717
20290
2323
2626
2929
3232
3535
3838
2 2
55
8 8
1111
1414
1717
2020
2323
2626
2929
3232
3535
3838

1.000000000E-05
1.000000000E-03
8.000000000E-02
8.000000000E-02
1.000000000E-02
1.000000000E~C2
1.000000000£-05
3.000000000E-01
1.0000000C0E-01
3.000C00000E-0L
6.000000000E~01
1.Q000000000E+0Q
2.000000000E+01
1.000000QQ00E-07
1.000000000E-07
1.000800000E-07
1.000000000E-07
1.000000000E-07
1.000000000E~07
1.00000C000E-07
1.000000000E-07
1.0600000000E-07
1.C20030000E-07
1.0000000030E-07
1.000000000E-07
1.000000000E-07

300

1.0600000000E~05
1.00006000Q0E-03
8.000000000E~02
1.000008C0QC0E-02
1.000000000E-02
1.0G0CCO0JCE~-C2
1.000000000E-05
1.000C0CC00E-01
3.00000CC0CE-01
1.000000C00E~01
8.000300000E~01
1.000000000E+01

1.000000000E~07
1.000000002E-07
1.000000000E-07
1.000000000E~07
1.000000000E~07
1.000030000E-07
1.0000C0000E-07
1.00000C00CE-07
1.009000000€E-07
1.C0C0CO0Q0E-07
1.000000000E-07
1.000000030E-07




Table H-8. Observer 3 weighting matrices.

OBSERVER INPUT DATA TIME: 17:08:23.0 DATE: 07/07/80 (80/18%)

B L T T . T e S LT 1 T TP PGy WS IpUpI Yy G PR

1 * CONTROL GAINS

2 * X1 TRANS 11

3 /GET=S306

4 /PUT=Q607 X1 GBSR

5 /SIGMA=6.0

6 /STATES ARE WEIGHTED

7 9 11 1.000000000E-04 2 2 5.0000000C0E-04 3 3 5.000000000E-04

8 Q 4 4 1.000000000E-01

9 Q 55 1.000000000E-01

10 Q 6 6 6.000000000E+01 7 7 5.000000000E-02 8 8 5.000000000E-02
11 Q 9 9 1.000000000E+00 1010 1.000000000E+00 1111 2.600000000E+03
12 Q 1212 1.000000000E-04 1313 5.000000000E-04 1414 5.000000000E-04
i3 Q 1515 1.000000000E-01

14 Q 1616 5.000000000E+00 1717 3.000000000E+01 1818 1.000000000E+00
15 @ 1919 1.000000000E+00

16 Q 2020 1.000000000E+00

17 Q 2121 1.000000000E+02 2222 2.000000000E+03

18 R 11 7.000000000E-07 2 2 7.000000000E~07 3 3 7.000000000E-07
19 R 4% 4 7.000000000E-07

20 /COMPUTE

21 /END

+ + + + femempr——=d + + + + + + + + +
END OF INPUT DATA
Note: Vl Q. V2 R
H.3 Input and Output Transforms

The input transform T2 is chosen to satisfy two conditions
B,T # 0 (H=-7)
B*T = 0 (H-8)

The rows of B* are the rows of 83, which correspond to modes 23, 26,

28, 29, and 30. B* is a 10x16 matrix, but only 5 rows are nonzero. B1

"

is a 22x16 matrix with 11 rows nonzero.

Equation (H-7) demands that control authority be provided to the

x, modes; Eq. (H-8) prevents control spillover into the set of B* modes.

1
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If the columns of T, are viewed as 16 element vectors, then Eq. (H-7) and

2

(H-8) can be satisfied by picking T. outside the space scanned by the

2
rows of B*. There is not a unique solution, however, unless the row

dimension of B* is one less than its column dimension, and the rows are
independent. The algorithm used in this thesis chose the columns of

T, to be the transposes of the rows of B This ensures that maximum

2
control authority is supplied to x

1° Thin, Eq. (H-8) was satisfied by
using a Gram-Schmidt scheme to subtract off from these columns, any
component that was not orthogonal to the B* row space. This is a
computationally simple algorithm. The resulting transform is given in

Table H-9, and the matrix product B T_ is given in Table H~10. Rows 1

to 36 of BT2 correspond to displacemeits of modes 4 to 39, and are all
zero. Rows 37 to 72 are nonzero, and correspond to the modal velocities
of modes 4 to 39. Of specific interest are rows 56, 59, 61, 62, and

63, which correspond to modes 20, 23, 26, 27, and 28. Note that for the
most part, the elements of these rows are orders of magnitude less than

elements in rows associated with 51.

Appendix A discusses equations of the form of (H-7) and (H-8),
and indicates when solutions will exist. Geometric arguments are made

which indicate that the control inputs should span the X space, but

1
be spatially orthogonal to the modes which must not be excited by
control. A practical consideration that influences transform construc-
tion is spatial aliasing. Mode shapes are evaluated at a discrete
number of points (the actuator locations), and within this constraint
certain modes may not be distinct. As an example, consider the 36 non-
zero rows of the B matrix. These row vectors span Rle, but because
there are 36 vectors, a large degree of dependence can be expected.

To demonstrate this dependence, it is useful to construct the matrix

of normalized inner products of each row vector with the other 37 row
vectors (see Table H-11l). The results are presented row by row. Look-
ing at the first row, one sees that mode 1 looks very similar to mode

10, 16, and 31. This similarity means that it is very difficult to
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1
1.279000000D-02
-5.0250000000-02
-4.974000000D-02
-5.025000000D0-02
-4.975000000D0-02
~1.2316000000-02
-1,980000000D-02
-1.231000000D-02
~1.979000000D-02
6.%40000000D-03
6.350000000D-03
6.9500000000-03
6.340000000D-03
0.0
0.0
2.549400000D-01
6
0.0
1.194800000D-01
1.619700000D-01
-1.1948900000-01
-1.61970000CD-01
-2.2644%2000000-01
-1.062600000D-01
2.2244200000-01
1.0626000000-01
-1.7573000000-01
%.7986000000-01
1.7573000000-01
~4.7986000000-01
3.0065000000-01
-3.0092000000-01
c.0

Table H-~9.

2
-2.3000000000-03
1.0740000000-01
-4%.5300000000-02
-1.1310000000-01
4.870000000D0-02
-2.4000000000-03
3.0800000000-02
5.6000000000-03
-3.5000000000-02
1.1180000000-01
7.8000000000-02
-1.1240000000-01
-7.8000000000-02
4.8310000000-01
~4.490000000D-01
0.0

7
0.0
~1.52106000000-01
~-4%.395000000D-02
1.5210000000-01
%.394000000D-02
~-2.2210006000-02
1.034100000D-01
2.221000000D0-02
~1.034100000D-01
2.3547000000-01
-5.5320000000-02
~2.3547000000-01
5.532000000D-02
-8.5400000000-02
-4.3436000000-01
0.0

Control Inputs

1
2-5
6-9

10-13

14,15
16

Input transform T

3
-1.2500000000-02
~1.4600000000-02
-2.5000000000-03

4.300000000D-03
1.7560000000-01
2.790000000D-02
2.500000000D-02
~1.180000000D-02
1.2100000000-02
~1.7500000000-02
-1.1000000000-03
6.6000000000-03
-8.6000000000~03
5.595000000D0~01
5.4550000000-01
=1.000000000D-0%

8
9.0
-3.771300000D-01
-3.105800000D-01
3.7713000000-01
3.106500000D-01
8.8320000000-02
1.685000000D-01
~8.832000000D-02
=1.689200000D-01
3.783800000D-01
~3.486600000D-01
-3.7838000000-01
3.6486600000D-01
~7.208000000D-02
1.092600000D-01
0.0

2

4
0.0
-2.715000000D-01
-8.150000000D-02
2.715000000D-01
8.1500000000-02
-3.5800000000-02
1.9260000000-01
3.5600000000-02
-1.9260000000-01
4.1810000000-01
-9.4000000000-02
-4.1810000000~01
9.4000000000-02
2.010000000D~-02
-6.030000000D-01
0.0

9
-2.3547000000-01
-1.168000000D-02

1.434000000D-02
~1.16800060900-02
1.434000000D-02
-5.470000000D-03
7.000000000D-05
-5.4700000000-03
7.0000000000-05

0.0
0.0
0.0
0.0
0.0
0.0
9.10

00000000-04

Member Actuators

Base-~-section axial.

Top-section diagonal.

5
-6.077000000D-02
2.698000000D~02
2.4460000000-02
2.698000000D-02
2.4660000000-02
-9.416000000D-02
-5.784000000D0-02
-9.419000000D0-02
-5.784000000D-02
-1.731500000D0-01
-1.712100090D0-01
-1.731500¢000-01
~1.712100000D0-01
0.0
0.0
1.030000000D-03

10
0.0
-1.286900C00D-01
-3.818300000D-01
1.286700000D-01
3.8183000000-01
-2.45700000CD0-02
-3.481000000D0-02
2.4570000000-02
3.4810000000-02
1.004000000D-01
1.480000000D-02
-1.0040000000-01
~1.4800000000-92
2.186700000D0-01
-1.9200000000-01
0.0

Second-section diagonal.

Third-section axial.

CMG torques

X, y rotatir

2z rotation.
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Table H-10.

IR R IR

0000000000000 0ACACCATNRANODOOO0OO0O0DO
oA N-R-N-R-N-N-N-N-N-N-N-N-N-N- B N - NN TR W~ - W - - W- WY

MR

7.356867634D-04
1.2635326410-07
~9.3489775000-06
~1.3723163050-08
3.516915606D-09
1.409744590D-06
2.0566422510-04
~6.1533174260~05
9.454837507D-02
~7.688773868D-08
6.701424150D0-04
~1.563942832D~-05
~1.9775300250-04
~3.917261044D-09
=7.4114410230-09
-2.6657950470-05
~8.432958784D-08
-1.091492067D-~07
~3.3311902300-05
3.485357069D-08
-1.1015592030-04
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2.493767653D-07
7.3962502940-04
=3.5247041140~-08
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Matrix product of BT
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930164926D-05
5.187017027D-04
2.834044085D-05
3.326015658D-04
9.088319974D-05
=2.1304516146D-07
-6.483217712D0-08
1.206687668D-06
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3.365381170D-04
-2.3664883910-04
1.6569573770D-05
3.894571835D-06
2.726409701D-05
=2.5101453230-03
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.250670194D-06
6.119073086D-06
6.6487728074D-04

~3.1041425370-04
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-2.952134045D-06
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=6.540064344D-07
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5.0560157850-04

~1.6514132850-04
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.661810347D-05
3.444138541D-04
~3.103922098D0-~04
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~1.3624337940-06
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1.3215793000-03
1.652730191D-02
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~2.1078669530-07
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~4.603583517D-05
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2.756652258D-05
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1.7701112420-03
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9.358265442D0-15
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3.1761863500-13
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1.3211349900-14
1.2258026410-15
~8.6818360500-0%
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. 780860693004
-1.0162214440-04
7.628770067D-05
6.289764957D-04
-2.8866254120-04
-2.5055769560-10
1.2596373510-09
2.259046741D-10
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%.9054881990-07
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-1.3167226180-0%
-7.6334340330-11
-3.4908041870-07
1.0555692370-07
-2.820647787D-08
5.2686345170-09
~4.9265828930~04
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7.496220345D-06
1.065262640D~-07
2.662641125D-06
8.9926477210-14
-1.108521316D-13
2.050821894D-06
1.823782672D~06
-5.1340367480-06
-4.1082255140~-14
-5.9717309850-14
-5.3604517260-05
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-1.7504825860-15
1.4006285430-13
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6.4341336010~-14
=1.992641581D-1%
5.6190453500-04
~1.1415589640-14
2.1618334330-07
~1.724416722D-15
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-2.885872662D0-07
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6.7075905370-05
1.253659724D-03
1.3627174150-04
2.239150858D-14
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Table

1
6.480000000D-03
3.53£C00003D-01
0.0

<1.0300000000-02
-3.360000000D0-02
-1.8227000000-01

]
1.4817000000-01
6.0000000000-03
0.0

~1.256000000D-01
9.430000000D-02
2.8200000000-03

11
~1.124000000D0-01
~5.4290000000-01

0.0

1.0100000000-01
~2.39900000¢D-01
-8.3000000000-03

16
9.4200000000-04
8.4000000000-03
8.5550000000-02

-2.26490000000-01
-2.9070000000-01
2.26400000000-03

21
9.420000000D0-04
-7.3000000030-03
-8.5550000000-02
-2.26490000300-01
2.9070000000-01
-2.2400000000-03

H-12.

2
1.957600000D0-02
9.€000000000-03
0.0

~2.1500000000-02
~2.60100000Q0-01
-1.3890000000-02

7
-6.4800000000-03
3.2440000000-01
0.0
1.030000000D-02
=3.3600000000-02
~1.8227000000-01

12
~1.4817000000-01
2.022000000D-01
0.0
1.2560000000-01
9.4300000000-02
2.8200000000-03

17
-2.3970000000-03
-8.2000000000-03

1.110%000000-01
1.0800000000-01
%.5750000000-01
=9.6700000000-03

22
-2.3970000000-03
7.9000000000-03
-1.1109000000-01

1.080000000D-01
~4.5750000000-01
9.6900000000-03

R R I e aati

3
4.930000000D-02
-2.3400000000-02
0.0
-3.8700000000-02
2.2000000000-01
1.5480000000-~02

8
-1.9593000000-02
~1.5230000000-01

0.0

2.1500000000-02
-2.6010000000-01
-1.389000000D0-02

13
3.180000000D-03
2.700000000D-03
1.5620000000-02

-4%.056000000D-01
-7.26430000000-01
1.3680000000-02

18
3.179000000D-03
-3.6000000000-03
~-1.5625600000-02
=4 .056000000D0-01
7.2430000000-01
~1.368000000D-02

23
020000000D0-02
0000000000-0%

3.
=7.
9.
2.159000000D-01
0.
0.

cCow o

309

Output transform (sheet 1 of 2).

4
8.1432000000-02
2.970€000000-02
0.0

-6.840000000D-02
8.330000000D-02

-3.4900000000~-03

9
~4.9300000000-02
-4.920000000D0-02

0.0

3.870000000D-02
2.2000000040-01
1,5480000000~02

pL
~3,470000000D0-03
-1.8500000000-02
3.5950000000~02
3.7970000000-01
7.0710000000-~01
-1.194000000D-02

19
~3.64650000000-03
1.860000000D-02
-3.595000000D0-02
3.7970000000-01
-7.0700000000-01
1.194000000D-02

24
-9.330000000D0-02
-5.7150000000-01

2.7410000000-04
-4.460000000D-02
~4.434000000D0~01

1.7997000000-01

s
1.1241000000-01
~-1.70063CC530-02
0.0
-1.010000C00D-01
-2.399000000D-01
~8.310000000D0-03

10
-8.143200000D0-02
4.6520000000-01
0.0
6.840000000D0~-02
8.3300000000-02
-3.4%00000000-03

15
-9.900000000D-03
-1.800000000D0~-03

6.0170000300-02
-6.800000000D-33
1.6410662000-01
~3.5300005000-03

20
=9.950000000D-0%
3.1000000000-03
-6.0170000000-02
-6.80000000CD-03
~1.9410000000-01
3.5300000000~03

25
-9.480000000D0-02
5.574%0000000-01
-2.740000C00D-04
2.085000000D-01
-8.2300000000-01
-4.8280000C0D-01
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Table

26
-~9.3300000000-02
5.6370000000-01
-2.741000000D-04
-4.4400000000-02
4.434000000D~-01
~1.799700000D-01

31
-3.450000000D-02
1.4370000000-01
-2.7230000000-04
1.503000000D0-01
4.6280000000-01
-2.2870000000-02

36
0.0
4.295000000D-01
-2.5970000000-04
0.0
3.6143000000+00
6.798000000D~02

H-12. Output transform (sheet 2 of 2).

27
-9.485000000D-02
~3.806000000D-01

2.740000000D-0%
2.089000000D-01
8.230000000D0-01
4.828000000D0-01

32
4.630000000D0-03
~5.3280000000-01
9.4900000000-04
1.4680000000-01
-3.2520000000-01
3.7912000000-02

37
0.0
6.003000000D0-01

28
~-3.320000000D0-02
~-9.880000000D-02
~2.705000000D-04
-8.980000000D-02
=1.473200000D+00
~4.4880000000-02

33
6.500000000D-03
-1.6180000000-01
1.3685000000D-04
-1.5290000000-01
2.8764000000+00
2.227900000D0-01

38
5.096000000D-03
4.800000000D0-03

29
-3.450000000D0-02
-1.1350000000-01

2.723000000D0-04
1.503000000D-01
-%.6280000000-01
2.2870000000-02

34
4.600000000D-03
5.6810000000-01

=9.4000000000-04
1.468000000D-01
3.2520000000-~01
-3.7912000000-01

30
~3.3200000000-02
1.2140000000-01
2.7050000600-04
~-8.980000000D0-02
1.475200000D+00
4.483000000D0-02

35
6.500000000D-03
1.475000000D~01

-1.385000000D-06
~1.529006000D0-01
-2.876400000D+00
-2.2279C6C00D-01

-2.591000000D-04 0.0

0.0 ~2.200000000D-03

9.491000000D-01 0.0

-1.0225000000-01 0.0

Sensors

1-12 Horizontal solar sensors.
13-22 Vertical solar sensors
23 Base-section member sensor.
24-27 Top-section diagonal.
28-31 Second-section diagonal.
32-35 Third-section axial.
36,37 Rotation x, vy.

38 Rotation z.
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Table H-13.

1
1.287603122D-02
3.4282561100-04
1.584%812282D-07

~1.1068610530-02
4.746914919D-04
2.7670491430-04

(]
~1.159896134D-03
1.287264510D-04
-6.910316414D-08
9.628033467D-06
3.160569192D-0%
-3.055292021D-05

11
1.151146713D-07
-2.244%730765D-0%
1.919879753D-10
1.098658853D-07
6.635335295D-06
~5.552782944D-04

16
3.5366291170-04
~1.563806812D-04
1.1565291760-07
2.729210102D-07
~7.9599370180-06
~1.1815021550-03

21
-7.187921248D-06
-6.226332936D-04

5.844422735D-09
1.743126274D-C6
-2.941450055D-05
3.68268%001D-03

26
1.5637100970-05
-2.2977644750-04
-1.0730501970-08
-3.503132936D-07
2.4372611320-05
2.0177170830-03

31
5.025340439D-04
-1.9641291250-04
-5.2927504130-07
1.3754734960-05
5.3189183600-06
1.778294474D-05

Matrix product T

2
-5.1590736€sD-05
-3.005603071D-04

4.16301276CD-03
8.132673528D-07
8.7700959570-03
-8.7022877390-05

7
=4.574355382D-02
~8.434349278D-06
-8.4849515120-11

3.932984275D-02
~1.264588958D-07
1.3207448790-05

12
~5.811346052D-0%
3.314821379D-05
=-2.603126158D0-07
2.0903518370-07
5.585487614D-06
~6.7393355150-04

17
-1.351875631D-05
1.325751346D-03
9.460160200D-06
1.473647068D-14
~2.091168700D-02
~2.616044243D-04

22
-6.239673503D-06
~6.4655938920-04
-5.3110852340-0%
-%.614783339D-14%

2.747027395D-05
4.4145283010-03

27
1.2542719410-05
-1.6955880830-04
-2.5038250890-05
1.8057377220-14
6.8559232750-06
6.0811572150-04

32
8.397399541D-06
-2.322117860D-03
-6.3107390810-09
8.4234744130~07
~3.4794077640-05
1.3290560850~-03

- e —————— e - = e

3 ©61%°

3
4.025242652D0-04
3.22115861€0-03
~2.412044888D-07
-3.259841614D-04

1.9321905850-03
-1.281573288D-03

8
-5.8284298920-05
-4.0870665150-05

1.587136445D-08
1.096088391D-03
-1.6989143170-07
7.3716796610-04

13
5.489282177D-06
-2.288362768D-06
-3.6850901281D0-11
-1.0553328956D-06
-1.8918913550-07
6.1872305270-06

18
3.185050190D0-05
-1.297890088D0-02
-1.120505078D-05
2.557935765D0~14
1.911914C51D-02
9.281997501D-03

23
7.703184533D-06
3.3752671510-04

~2.0561274050-05
8.547393797D-15
5.24%052707D-05
-2.287318948D-03

28
~1.4254454¢280-06
-2.107772229D0~05

5.0739945500-10
1.019961335D-06
2.0867658557D-07
8.259161996D-C5

33
5.7349496490-06
-6.3044477520-04
-6.192948161D0-09
-3.3629260450-06
-1.0605793600-05
7.3643602200-03

311

3

{(sheet 1 of

4
~5.137806905D-04
-3.8996763380~03

4.9636316470-02

5.879550493D-11

1.0322832120-01
=-1.7670189940~03

9
=-7.052927462D-08
1.889572775D0-03
5.958297357p-06
-8.7468772870-12
4.0341033500-02
3.810216687D-06

14
.966246548D-08
.553698901D-07
.0296869540-03
.9306989320-13
.981167844D-06
.8405155806D-06

N W

19
~1.265638304D-04
2.892439309D-06
9.970248624D-09
4.3446860220-04
1.024658663D-06
3.008042473D-04

24
8.4683882958D~07
9.418323083D-04
-1.353552241D0-09
-6.630937276D-07

4.854377228D-06
-1.0895004800-03

29
~1.3667789800-06
6.804140971D-06
1.746847739D-07
-5.5596572810~14
-3.921525054D-08
-5.6697626600-05

34
~1.3251990250-03
5.0905769710~04
6.6829292690-09
-4.181807272D0-07
2.443359407D-06
6.9626157670-05

2).

5
%.874142488D-07
6.71428185430-07
~1.332104841D-06
~2.055394685D-09

6.704465871D-06
-1.960189855D-04

10
3.615083831D-05
=1.1945244570-02
-8.860456878D-03
-5.525087381D-12
-3.380763775D-02
5.578818950D-03

15
6.754842607D-0%
2.185118113D-05
3.582101772D-07

-2.2337156460-14
9.8874367950-C6
-2.117110485D-04

20
7.543269728D-07
6.937256757D-06
~4.614600363D-06
-1.219311672D-14

6.064527934D-06
-2.5877225450-05

25
3.194582611D-06
5.9%94927725D-04%
~-4.718465571D-09

1.4398751236D-C6
~4,73067C873D0~05
-4.080195326D-03

30
5.0246705380-0%
~1.663472054D-05
7.65%4635360-05
1.048729044D-13
~7.280256587D-06
1.494137959D~-04

35
~2.247235907D-06
5.2754465820-04
2.0826051090-10
1.377705082D0-03
5.0112963370-07
~5.749018651D-05




Matrix product T3 C1C2C3 (sheet 2 of 2).

Table H-13.
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construct a control input that would spatially differentiate between

these modes.

For the'design of the M2V2 controller, the major concern is that
mode 22 (row 19 in Table H-11) is spatially similar to modes 28 and 29.
Given the actuator configuration described in Appendix E, there are
only two effective axial actuators: the base-section member actuator,
and the four section-3 member actuators used in combination. There is
no way to combine these actuators to isolate modes 28 and 29 (which are
both axial modes), and to continue to control mode 22 (also axial).
The orthogonalization algorithm produced a null vector for this case.
The best solution is to reconfigure the actuators. For the results of

Chapter 3, spillover of mode 22 commands into mode 29 was permitted.

Another practical comment can be made regarding the requirement
that the columns of T2 be orthogonal to the rows of matrix B*. Orthog-
onalization is a geometrically attractive idea, but it is too restrictive.
All that is required is that the inner products of T2 columns and B*
rows must be small. In other words, both direction and magnitude are

important.

The output transform T. is required to satisfy

3
T3C1 £ 0 (H-9)
T3C2 = 0
(H-10)
'I‘3C3 = 0
The columns if C1 were chosen to be the initial rows of T3. Then, as be-

fore, the components of these rows which were contained in the column

space of C2 or C3 were subtracted off. The final transform is shown in

Table H-12 and the matrix of C column dot products is shown in Table

H-13. The orthogonalization scheme started out with 11 rows which

313

S - e o Ty R - - . - — C . P -

)




were transposes of the C columns. These rows were made orthogonal to

the 28 C2 and C3 columns. Of the 11 original rows, 5 became null vectors;
C
r

an indication that these starting vectors were in C space. The six

2 3
remaining vectors make up the T3 given in Table H-12. The matrix pro-
duct T3|._C1 C2 C3_J(see Table H~13) allows T3 to be evaluated. Only
rows 1, 3, 4, and 5 meet the criteria of being nonzero for X, states

and very small for x_ and x, states. Spatial aliasing, as dictated by

2 3
the sensor placement, is responsible for the degraded character of rows

2 and 6. However, the remaining four measurements span 51 space.

The computations associated with T2 and T3 are straightforward,
and easy checks are available. Stronger designs could have been achieved
if the sensor/actuator locations had been iterated. In particular,
more axial actuators, and more sensors near the solar panel tips would

have eased the T2/'I‘3 design process.
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